Convolutors on Sω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}_{\omega }({\mathbb R}^N)$$\end{document}

被引:0
作者
Angela A. Albanese
Claudio Mele
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷 / 4期
关键词
Convolutor; Multiplier; Weight function; Ultradifferentiable function space; Fourier transform; Primary 46E10; 46F05; Secondary 47B38;
D O I
10.1007/s13398-021-01097-1
中图分类号
学科分类号
摘要
In this paper we continue the study of the spaces OM,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{M,\omega }({\mathbb R}^N)$$\end{document} and OC,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{C,\omega }({\mathbb R}^N)$$\end{document} undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that OC,ω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$\end{document} is the space of convolutors of the space Sω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}_\omega ({\mathbb R}^N)$$\end{document} of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space Sω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}'_\omega ({\mathbb R}^N)$$\end{document}. We also establish that the Fourier transform is an isomorphism from OC,ω′(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$\end{document} onto OM,ω(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{M,\omega }({\mathbb R}^N)$$\end{document}. In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by Lb(Sω(RN))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$\end{document} and the last space is endowed with its natural lc-topology.
引用
收藏
相关论文
共 39 条
  • [1] Betancor JJ(2003)Beurling ultradistributions of J. Math. Anal. Appl. 279 246-265
  • [2] Fernández C(1965)-growth Ark. Mat. 6 351-407
  • [3] Galbis A(2020)Linear partial differential operators and generalized distributions J. Funct. Anal. 278 1-45
  • [4] Björck G(2017)Real Paley-Wiener theorems in spaces of ultradifferentiable functions J. Math. Anal. Appl. 446 920-944
  • [5] Boiti C(2007)Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms Bull. Belg. Math. Soc. Simon Stevin 14 425-444
  • [6] Jornet D(1990)A comparison of two different ways to define classes of ultradifferentiable functions Result. Math. 17 206-237
  • [7] Oliaro A(1992)Ultradifferentiable functions and Fourier analysis Proc. Am. Math. Soc. 116 127-134
  • [8] Boiti C(2019)The characterization of the almost periodic ultradistributions of Beurling type Math. Nachr. 292 573-602
  • [9] Jornet D(2020)On weighted inductive limits of spaces of ultradifferentiable functions and their duals Proc. Am. Math. Soc. 148 5171-5180
  • [10] Oliaro A(2014)Characterization of nuclearity for Beurling-Björk spaces Novi Sad J. Math. 44 1-18