Effect of dark energy in geometrothermodynamics and phase transitions of regular Bardeen AdS black hole

被引:0
作者
C. L. Ahmed Rizwan
A. Naveena Kumara
K. V. Rajani
Deepak Vaid
K. M. Ajith
机构
[1] National Institute of Technology Karnataka (NITK),Department of Physics
[2] Surathkal,undefined
来源
General Relativity and Gravitation | 2019年 / 51卷
关键词
Regular-Bardeen black hole; Phase transitions; Quintessence; Thermodynamic geometry; Critical phenomena;
D O I
暂无
中图分类号
学科分类号
摘要
We study the thermodynamics and geometrothermodynamics of regular Bardeen-AdS black hole with quintessence. The thermodynamics of the black hole is scrutinised using Temperature–Entropy (T–S), Pressure–Volume (P–v) and Gibbs energy plots, which indicates a critical behaviour. The behaviour is also confirmed from the divergence of specific heat against entropy, which shows a second-order phase transition. Furthermore, we observe that the quintessence state parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} shifts the transition point to lower entropy values. Using the concept of thermodynamic Ruppeiner and Weinhold geometry, we calculated the thermodynamic curvature scalar RR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_R$$\end{document} and RW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_W$$\end{document} in the quintessence dark energy regime (ω=-2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = -2/3$$\end{document}). While these curvature scalars enable us to identify the critical behaviour, they do not show divergence at the phase transition points observed in specific heat study. To resolve this puzzle, we have adopted the method of geometrothermodynamics proposed by Hernando Quevedo. Choosing a Legendre invariant ‘Quevedo’ metric, the curvature scalar RQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_Q$$\end{document} shows singularity at the same point as seen in the specific heat divergence.
引用
收藏
相关论文
共 200 条
[1]  
Maldacena J(1999)undefined Int. J. Theor. Phys. 38 1113-undefined
[2]  
Hawking SW(1983)undefined Commun. Math. Phys. 87 577-undefined
[3]  
Page DN(1998)undefined Adv. Theor. Math. Phys. 2 505-undefined
[4]  
Witten E(1999)undefined Phys. Rev. D 60 064018-undefined
[5]  
Chamblin A(1999)undefined Phys. Rev. D 60 104026-undefined
[6]  
Emparan R(2000)undefined Class. Quantum Gravity 17 399-undefined
[7]  
Johnson CV(2011)undefined Class. Quantum Gravity 28 125020-undefined
[8]  
Myers RC(2011)undefined Class. Quantum Gravity 28 235017-undefined
[9]  
Chamblin A(2012)undefined JHEP 2012 033-undefined
[10]  
Emparan R(2009)undefined Class. Quantum Gravity 26 195011-undefined