M-estimation in high-dimensional linear model

被引:0
作者
Kai Wang
Yanling Zhu
机构
[1] Anhui University of Finance and Economics,School of Statistics and Applied Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
M-estimation; High-dimensionality; Variable selection; Oracle property; Penalized method; 62F12; 62E15; 62J05;
D O I
暂无
中图分类号
学科分类号
摘要
We mainly study the M-estimation method for the high-dimensional linear regression model and discuss the properties of the M-estimator when the penalty term is a local linear approximation. In fact, the M-estimation method is a framework which covers the methods of the least absolute deviation, the quantile regression, the least squares regression and the Huber regression. We show that the proposed estimator possesses the good properties by applying certain assumptions. In the part of the numerical simulation, we select the appropriate algorithm to show the good robustness of this method.
引用
收藏
相关论文
共 23 条
[1]  
Huber P.(1964)Robust estimation of a location parameter Ann. Math. Stat. 35 73-101
[2]  
Huber P.(1973)Robust regression: asymptotics, conjectures and Monte Carlo Ann. Stat. 1 799-821
[3]  
Portnoy S.(1984)Asymptotic behavior of M-estimators of p regression parameters when Ann. Stat. 12 1298-1309
[4]  
Welsh A.(1989) is large, I: consistency Ann. Stat. 17 337-361
[5]  
Mammen E.(1989)On M-processes and M-estimation Ann. Stat. 17 382-400
[6]  
Bai Z.(1994)Asymptotics with increasing dimension for robust regression with applicationsto the bootstrap J. Multivar. Anal. 51 211-239
[7]  
Wu Y.(2000)Limiting behavior of M-estimators of regression coefficients in high dimensional linear models I. Scale-dependent case J. Multivar. Anal. 73 120-135
[8]  
He X.(2011)On parameters of increasing dimensions Stat. Sin. 21 391-419
[9]  
Shao Q.(2008)Nonconcave penalized M-estimation with a diverging number of parameters Ann. Stat. 36 1509-1566
[10]  
Li G.(1992)One-step sparse estimates in nonconcave penalized likelihood models Stat. Sin. 2 237-254