Fixed Points and Common Fixed Points for Orbit-Nonexpansive Mappings in Metric Spaces

被引:0
作者
Rafael Espínola
Maria Japón
Daniel Souza
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Metric spaces; metric normal structure; orbits; nonexpansive operators; convexity structure; action of groups; common fixed points; 47H09; 47H10; 47H20; 54E40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce an interlacing condition on the elements of a family of operators that allows us to gather together a number of results on fixed points and common fixed points for single and families of mappings defined on metric spaces. The innovative concept studied here deals with nonexpansivity conditions with respect to orbits and under assumptions that only depend on the features of the closed balls of the metric space.
引用
收藏
相关论文
共 45 条
[1]  
Amini-Harandi A(2016)Weak fixed point property for nonexpansive mappings with respect to orbits in Banach spaces J. Fixed Point Theory Appl. 18 601-607
[2]  
Fakhar M(2019)Existence of fixed points in a class of convex sets Z. Anal. Anwend. 38 351-374
[3]  
Hajisharifi HR(1948)On the center of a convex set (Russian) Doklady Akad. Nauk SSSR (N.S.) 59 837-840
[4]  
Betiuk A(2022)A characterization of weak proximal normal structure and best proximity pairs Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 Paper No. 80, 7-362
[5]  
Domínguez Benavides T(2021)Fixed point properties and reflexivity in variable Lebesgue spaces J. Funct. Anal. 280 Paper No. 108896, 22-1045
[6]  
Japón M(1998)The Abstr. Appl. Anal. 3 343-481
[7]  
Brodskiĭ MS(2021)-fixed point property for nonexpansive mappings J. Fixed Point Theory Appl. 23 Paper No. 45, 19-466
[8]  
Milman DP(2021)New examples of subsets of Optimization 70 1029-276
[9]  
Digar A(2015) with the FPP and stability of the FPP in hyperconvex spaces J. Math. Anal. Appl. 431 471-644
[10]  
Espínola García R(2009)Study of minimal pairs for relatively nonexpansive mappings with respect to orbits Taiwan. J. Math. 13 459-1313