One-dimensional discrete-time quantum walks on random environments

被引:0
|
作者
Norio Konno
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
来源
关键词
Quantum walk; Random environment; Limit theorem; Hadamard walk; 03.67.Lx; 05.40.Fb; 02.50.Cw; 60F05; 60G50; 82B41; 81Q99;
D O I
暂无
中图分类号
学科分类号
摘要
We consider discrete-time nearest-neighbor quantum walks on random environments in one dimension. Using the method based on a path counting, we present both quenched and annealed weak limit theorems for the quantum walk.
引用
收藏
页码:387 / 399
页数:12
相关论文
共 50 条
  • [2] Discrete-time quantum walks on one-dimensional lattices
    Xu, X. -P.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (04): : 479 - 488
  • [3] Discrete-time quantum walks on one-dimensional lattices
    X.-P. Xu
    The European Physical Journal B, 2010, 77 : 479 - 488
  • [4] Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator
    Siyong Jia
    Delong Jia
    Ziteng Song
    Junjun Xu
    Journal of Low Temperature Physics, 2022, 209 : 44 - 53
  • [5] Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator
    Jia, Siyong
    Jia, Delong
    Song, Ziteng
    Xu, Junjun
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (1-2) : 44 - 53
  • [6] Quantum state engineering using one-dimensional discrete-time quantum walks
    Innocenti, Luca
    Majury, Helena
    Giordani, Taira
    Spagnolo, Nicolo
    Sciarrino, Fabio
    Paternostro, Mauro
    Ferraro, Alessandro
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [7] Revisiting one-dimensional discrete-time quantum walks with general coin
    Jayakody, Mahesh N.
    Meena, Chandrakala
    Pradhan, Priodyuti
    PHYSICS OPEN, 2023, 17
  • [8] Statistics of Floquet quasienergy spectrum for one-dimensional periodic, Fibonacci quasiperiodic and random discrete-time quantum walks
    Gong, Longyan
    Sun, Jingye
    Guo, Xuan
    Cheng, Weiwen
    Zhao, Shengmei
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (05):
  • [9] Statistics of Floquet quasienergy spectrum for one-dimensional periodic, Fibonacci quasiperiodic and random discrete-time quantum walks
    Longyan Gong
    Jingye Sun
    Xuan Guo
    Weiwen Cheng
    Shengmei Zhao
    The European Physical Journal B, 2022, 95
  • [10] RETURN PROBABILITY OF ONE-DIMENSIONAL DISCRETE-TIME QUANTUM WALKS WITH FINAL-TIME DEPENDENCE
    Ide, Yusuke
    Konno, Norio
    Machida, Takuya
    Segawa, Etsuo
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 761 - 773