Decomposition of the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectrum of an element of a Banach algebra

被引:0
作者
Kousik Dhara
S. H. Kulkarni
机构
[1] Indian Statistical Institute,Theoretical Statistics and Mathematics Unit
[2] Bangalore Centre,Department of Mathematics
[3] Indian Institute of Technology Palakkad,undefined
关键词
Banach algebra; Spectrum; Pseudospectrum; -Pseudospectrum; 47A10; 46H05; 47A12;
D O I
10.1007/s43036-019-00016-x
中图分类号
学科分类号
摘要
Let A be a complex Banach algebra with unit. For an integer n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectrum of a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document} is defined by Λn,ϵ(A,a):=λ∈C:(λ-a)is not invertible inAor‖(λ-a)-2n‖1/2n≥1ϵ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varLambda _{n,\epsilon } (A,a):=\left\{ \lambda \in \mathbb {C}: (\lambda -a) \text { is not invertible in } A \text { or } \Vert (\lambda -a)^{-2^{n}}\Vert ^{1/2^n} \ge \frac{1}{\epsilon }\right\} . \end{aligned}$$\end{document}Let p∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in A$$\end{document} be a nontrivial idempotent. Then pAp={pbp:b∈A}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pAp=\{pbp:b\in A\}$$\end{document} is a Banach subalgebra of A with unit p, known as a reduced Banach algebra. Suppose ap=pa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ap=pa$$\end{document}. We study the relationship of Λn,ϵ(A,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{n,\epsilon }(A,a)$$\end{document} and Λn,ϵ(pAp,pa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{n,\epsilon }(pAp,pa)$$\end{document}. We extend this by considering first a finite family, and then an at most countable family of idempotents satisfying some conditions. We establish that under suitable assumptions, the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectrum of a can be decomposed into the union of the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectra of some elements in reduced Banach algebras.
引用
收藏
页码:248 / 260
页数:12
相关论文
共 24 条
[1]  
Böttcher A(1994)Pseudospectra and singular values of large convolution operators J. Integral Equ. Appl. 6 267-301
[2]  
Böttcher A(1997)Norms of inverses, spectra, and pseudospectra of large truncated Wiener–Hopf operators and Toeplitz matrices NY J. Math. 3 1-31
[3]  
Grudsky SM(2012)Spectrum of the direct sum of operators Electron. J. Differ. Equ. 2012 1-8
[4]  
Silbermann B(2018)The J. Math. Anal. Appl. 464 939-954
[5]  
Çevik EO(2019)-pseudospectrum of an element of a Banach algebra Integral Equ. Oper. Theory 91 17-2126
[6]  
Ismailov ZI(2008)Continuity of the J. Funct. Anal. 254 2092-3559
[7]  
Dhara K(2010)-pseudospectrum in Banach algebras Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 3539-124
[8]  
Kulkarni SH(2011)On the approximation of spectra of linear operators on Hilbert spaces J. Am. Math. Soc. 24 81-680
[9]  
Dhara K(1998)Infinite-dimensional numerical linear algebra: theory and applications RAIRO Modél. Math. Anal. Numér. 32 671-414
[10]  
Kulkarni SH(2009)On the solvability complexity index, the Opuscula Math. 29 399-493