Twisted submanifolds of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}

被引:0
作者
Gaetano Fiore
Thomas Weber
机构
[1] Universitá di Napoli “Federico II”,Dip. di Matematica e Applicazioni
[2] I.N.F.N.,Dip. di Matematica
[3] Sezione di Napoli,undefined
[4] Universitá di Bologna,undefined
关键词
Drinfel’d twist; Deformation quantization; Noncommutative geometry; Hopf algebras, their representations; Tangent, normal vector fields; First, second fundamental form; 81R60; 83C65;
D O I
10.1007/s11005-021-01418-w
中图分类号
学科分类号
摘要
We propose a general procedure to construct noncommutative deformations of an embedded submanifold M of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} determined by a set of smooth equations fa(x)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^a(x)=0$$\end{document}. We use the framework of Drinfel’d twist deformation of differential geometry of Aschieri et al. (Class Quantum Gravity 23:1883, 2006); the commutative pointwise product is replaced by a (generally noncommutative) ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document}-product determined by a Drinfel’d twist. The twists we employ are based on the Lie algebra Ξt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi _t$$\end{document} of vector fields that are tangent to all the submanifolds that are level sets of the fa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^a$$\end{document} (tangent infinitesimal diffeomorphisms); the twisted Cartan calculus is automatically equivariant under twisted Ξt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi _t$$\end{document}. We can consistently project a connection from the twisted Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} to the twisted M if the twist is based on a suitable Lie subalgebra e⊂Ξt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {e}}\subset \Xi _t$$\end{document}. If we endow Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with a metric, then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi–Civita connection consistently to the twisted M, provided the twist is based on the Lie subalgebra k⊂e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {k}}\subset {\mathfrak {e}}$$\end{document} of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document}-polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} and twisted hyperboloids embedded in twisted Minkowski R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} [these are twisted (anti-)de Sitter spaces dS2,AdS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dS_2,AdS_2$$\end{document}].
引用
收藏
相关论文
共 100 条
[1]  
Aschieri P(2006)Noncommutative geometry and gravity Class. Quantum Gravity 23 1883-undefined
[2]  
Dimitrijevic M(2009)Noncommutative gravity solutions J. Geom. Phys. 60 375-undefined
[3]  
Meyer F(2009)Star product geometries Russ. J. Math. Phys. 16 371-undefined
[4]  
Wess J(2008)Twisting all the way: from classical mechanics to quantum fields Phys. Rev. D 77 025037-undefined
[5]  
Aschieri P(2014)Noncommutative connections on bimodules and Drinfeld twist deformation Adv. Theor. Math. Phys. 18 513-undefined
[6]  
Castellani L(1978)Deformation theory and quantization, part I Ann. Phys. 111 61-undefined
[7]  
Aschieri P(1978)Deformation theory and quantization, part II Ann. Phys. 111 111-undefined
[8]  
Aschieri P(2018)Obstructions for twist star products Lett. Math. Phys. 108 1341-undefined
[9]  
Lizzi F(2005)Jordanian quantum deformations of Eur. Phys. J. C 44 139-undefined
[10]  
Vitale P(2019) anti-de-Sitter and Poincaré superalgebras SIGMA 15 054-undefined