Hamiltonian Systems and Sturm–Liouville Equations: Darboux Transformation and Applications

被引:0
作者
Alexander Sakhnovich
机构
[1] Universität Wien,Fakultät für Mathematik
来源
Integral Equations and Operator Theory | 2017年 / 88卷
关键词
Hamiltonian system; Sturm–Liouville equation; Darboux transformation; Primary 34B24; 34L15; 47E05; Secondary 34B20; 74H05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce GBDT version of Darboux transformation for Hamiltonian and Shin–Zettl systems as well as for Sturm–Liouville equations (including indefinite Sturm–Liouville equations). These are the first results on Darboux transformation for general-type Hamiltonian and for Shin–Zettl systems. The obtained results are applied to the corresponding transformations of the Weyl–Titchmarsh functions and to the construction of explicit solutions of dynamical systems, of two-way diffusion equations and of indefinite Sturm–Liouville equations. The energy of the explicit solutions of dynamical systems is expressed (in a quite simple form) in terms of the parameter matrices of GBDT. The insertion of non-real eigenvalues into the spectrum of indefinite Sturm–Liouville operators is studied.
引用
收藏
页码:535 / 557
页数:22
相关论文
共 82 条
[1]  
Atkinson FV(1974)On the Proc. Lond. Math. Soc. s3–29 368-384
[2]  
Everitt WN(1981)-coefficient of Weyl for a differential equation with an indefinite weight function J. Math. Phys. 22 954-960
[3]  
Ong KS(2006)Partial-range completeness and existence of solutions to two-way diffusion equations Adv. Differ. Equ. 11 601-626
[4]  
Beals R(2013)Transformation theory of symmetric differential expressions Integral Equ. Oper. Theory 77 299-301
[5]  
Behncke H(2013)An open problem: accumulation of nonreal eigenvalues of indefinite Sturm–Liouville operators Math. Ann. 357 185-213
[6]  
Hinton DB(2004)Bounds on the non-real spectrum of differential operators with indefinite weights J. Comput. Appl. Math. 171 93-101
[7]  
Behrndt J(2009)Oscillation results for Sturm–Liouville problems with an indefinite weight function J. Phys. A 42 404003-127
[8]  
Behrndt J(1955)Algebraic construction of the Darboux matrix revisited Q. J. Math. Oxf. II Ser. 6 121-61
[9]  
Philipp F(1989)Associated Sturm–Liouville systems J. Differ. Equ. 79 31-310
[10]  
Trunk C(1978)A Krein space approach to symmetric ordinary differential operators with an indefinite weight function Duke Math. J. 45 267-522