q- Lupas Kantorovich operators based on Polya distribution

被引:0
|
作者
Agrawal P.N. [1 ]
Gupta P. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
关键词
A-statistical convergence; Degree of approximation; Modulus of continuity; Peetre‘s K-functional;
D O I
10.1007/s11565-017-0291-1
中图分类号
学科分类号
摘要
The purpose of the present paper is to introduce a Kantorovich modification of the q-analogue of the Stancu operators defined by Nowak (J Math Anal Appl 350:50–55, 2009). We study a local and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Further A-statistical convergence properties of these operators are investigated. Next, a bivariate generalization of these operators is introduced and its rate of convergence is discussed with the aid of the partial and complete modulus of continuity and the Peetre‘s K-functional. © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [31] BASKAKOV-SZASZ-TYPE OPERATORS BASED ON INVERSE POLYA EGGENBERGER DISTRIBUTION
    Kajla, Arun
    Acu, Ana Maria
    Agrawal, P. N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (01): : 106 - 123
  • [32] SOME APPROXIMATION RESULTS FOR BERNSTEIN-KANTOROVICH OPERATORS BASED ON (p, q)-CALCULUS
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (04): : 129 - 142
  • [33] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [34] ON THE q-ANALOGUES FOR SOME KANTOROVICH TYPE LINEAR OPERATORS
    Aral, Nazlim Deniz
    Sevinc, Zeynep
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 575 - 576
  • [35] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [36] NOTE ON A q-ANALOGUE OF STANCU-KANTOROVICH OPERATORS
    Acu, Ana Maria
    Barbosu, Dan
    Sofonea, Daniel Florin
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 3 - 15
  • [37] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [38] On (p, q)-generalization of Szasz-Mirakyan Kantorovich operators
    Sharma, Honey
    Gupta, Cheena
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 213 - 222
  • [39] On certain q-analogue of Szász Kantorovich operators
    Mahmudov N.
    Gupta V.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 407 - 419
  • [40] Q-Analogue of Generalized Bernstein-Kantorovich Operators
    Pratap, Ram
    Deo, Naokant
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 67 - 75