Characterizing the R-duality of g-frames

被引:0
作者
Liang Li
Pengtong Li
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2019卷
关键词
Frames; G-frames; G-R-duals; G-orthonormal bases; Dilations; G-duals; G-Riesz sequences; 46L10; 42C40; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define the g-Riesz-dual of a given special operator-valued sequence with respect to g-orthonormal bases for a separable Hilbert space. We demonstrate that the g-R-dual keeps some synchronous frame properties with the operator-valued sequence given. We also display some Schauder basis-like properties of the g-R-dual in the light of the properties of the given sequence. In particular, the g-R-dual can be characterized by the use of another sequence, related to the given sequence. Finally, a special sequence is constructed to build the relationship between an operator-valued sequence and a g-Riesz sequence.
引用
收藏
相关论文
共 21 条
[1]  
Casazza P.(2004)Duality principles in frame theory J. Fourier Anal. Appl. 10 383-408
[2]  
Kutyniok G.(2011)On the duality principle by Casazza, Kutyniok, and Lammers J. Fourier Anal. Appl. 17 640-655
[3]  
Lammers M.(2017)Duality properties for generalized frames Banach J. Math. Anal. 11 880-898
[4]  
Christensen O.(2012)G-bases in Hilbert spaces Abstr. Appl. Anal. 2012 1047-1058
[5]  
Kim H.(2013)G-orthonormal bases in Hilbert spaces Sci. Sin., Math. 43 313-328
[6]  
Kim R.(2014)Operator parameterizations of g-frames Taiwan. J. Math. 18 2361-2372
[7]  
Enayati F.(2001)Operator valued frames and structured quantum channels Sci. China Math. 54 6349-6385
[8]  
Asgari M.(2009)Operator-valued frames Trans. Am. Math. Soc. 361 201-209
[9]  
Guo X.(2011)Exact g-frames in Hilbert spaces J. Math. Anal. Appl. 374 437-452
[10]  
Guo X.(2006)G-frames and g-Riesz bases J. Math. Anal. Appl. 322 undefined-undefined