On the Averaging Principle of Caputo Type Neutral Fractional Stochastic Differential Equations

被引:0
作者
Jing Zou
Danfeng Luo
机构
[1] Guizhou University,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2024年 / 23卷
关键词
Fractional stochastic differential equation; Existence and uniqueness; Averaging principle; Neutral; 26A33; 60H10; 74H20; 74H25; 34C29;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, we study the averaging principle for a class of neutral fractional stochastic differential equations. Firstly, the existence and uniqueness of solution are discussed by applying the principle of contraction mapping. Secondly, the averaging principle in the sense of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document} is studied by using the Jensen’s inequality, Hölder inequality, Burkholder–Davis–Gundy inequality, Grönwall–Bellman inequality and interval translation technique. In addition, we give an example and numerical simulations to analyze the theoretical results.
引用
收藏
相关论文
共 214 条
[1]  
Ahmed HM(2018)Hilfer fractional stochastic integro-differential equations Appl. Math. Comput. 331 182-189
[2]  
El-Borai MM(2021)The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps Appl. Math. Lett. 112 105-15
[3]  
Ahmed HM(2022)Mixed neutral Caputo fractional stochastic evolution equations with infinite delay: existence, uniqueness and averaging principle Fractal Fract. 6 1-1558
[4]  
Zhu QX(2021)A fractional order HIV/AIDS epidemic model with Mittag–Leffler kernel Adv. Differ. Equ. 2021 1549-608
[5]  
Abouagwa M(2012)Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space Stat. Probab. Lett. 82 601-6237
[6]  
Aljoufi LS(2015)Results for mild solution of fractional coupled hybrid boundary value problems Open Math. 13 6229-2518
[7]  
Bantan RAR(2015)On the exact solution of wave equations on cantor sets Entropy 17 2482-760
[8]  
Khalaf AD(2021)A fractional order Zika virus model with Mittag–Leffler kernel Chaos Solitons Fractals 146 745-177
[9]  
Elgarhy M(2011)Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise SIAM J. Math. Anal. 43 137-948
[10]  
Aslam M(2013)Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion Front. Math. China 8 899-348