We study the space of all continuous and increasing self-mappings of a real interval [a, b], where a<b\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a<b$$\end{document} are real numbers, equipped with the topology of uniform convergence. We show, in particular, that most such functions have infinitely many different fixed points.