A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

被引:0
作者
George H. Bryan
Rochelle P. Worsnop
Julie K. Lundquist
Jun A. Zhang
机构
[1] National Center for Atmospheric Research,Department of Atmospheric and Oceanic Sciences
[2] University of Colorado at Boulder,NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies
[3] National Renewable Energy Laboratory,undefined
[4] University of Miami,undefined
来源
Boundary-Layer Meteorology | 2017年 / 162卷
关键词
Boundary-layer dynamics; Large-eddy simulation; Single-column modelling; Tropical cyclone;
D O I
暂无
中图分类号
学科分类号
摘要
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim $$\end{document}0.1 Hz, but only when the horizontal grid spacing ≲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lesssim $$\end{document}20 m.
引用
收藏
页码:475 / 502
页数:27
相关论文
共 157 条
  • [1] Black PG(2007)Air-sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air-sea transfer experiment Bull Am Meteorol Soc 88 357-374
  • [2] D’Asaro EA(2012)Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes Mon Weather Rev 140 1125-1143
  • [3] Drennan WM(2002)A benchmark simulation for moist nonhydrostatic numerical models Mon Weather Rev 130 2917-2928
  • [4] French JR(2009)The maximum intensity of tropical cyclones in axisymmetric numerical model simulations Mon Weather Rev 137 1770-1789
  • [5] Niiler PP(2014)Gravity currents in confined channels with environmental shear J Atmos Sci 71 1121-1142
  • [6] Sanford TB(2003)Resolution requirements for the simulation of deep moist convection Mon Weather Rev 131 2394-2416
  • [7] Terrill EJ(1971)Boundary layer induced by a potential vortex Phys Fluids 14 1821-1833
  • [8] Walsh EJ(1980)Stratocumulus-capped mixed layer derived from a three-dimensional model Boundary-Layer Meteorol 18 495-527
  • [9] Zhang JA(2004)On the limiting aerodynamic roughness of the ocean in very strong winds Geophys Res Lett 31 306-1115
  • [10] Bryan GH(2007)Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux J Atmos Sci 64 1103-604