Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes

被引:0
作者
Diana Vaman
York-Peng Yao
机构
[1] The University of Virginia,Department of Physics
[2] The University of Michigan,Department of Physics
来源
Journal of High Energy Physics | / 2010卷
关键词
Gauge Symmetry; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Writing the fully color dressed and graviton amplitudes, respectively, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textbf{A} = \left\langle {C} \mathrel{\left | {\vphantom {C A}} \right. } {A} \right\rangle = \left\langle {C} \mathrel{\left | {\vphantom {C {M\left| N \right.}}} \right. } {{M\left| N \right.}} \right\rangle $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\textbf{A}_{gr}} = \left\langle {{\tilde{N}}} \mathrel{\left | {\vphantom {{\tilde{N}} {M\left| N \right.}}} \right. } {{M\left| N \right.}} \right\rangle $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| A \right\rangle $\end{document} is a set of Kleiss-Kuijf color ordered basis, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| N \right\rangle $\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| {\tilde{N}} \right\rangle $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| C \right\rangle $\end{document} are the similarly ordered numerators and color coefficients, we show that the propagator matrix M has (n − 3)(n − 3)! independent eigenvectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| {\lambda_j^0} \right\rangle $\end{document} with zero eigenvalue, for n-particle processes. The resulting equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| {\lambda_j^0} \right\rangle = 0 $\end{document} are relations among the color ordered amplitudes. The freedom to shift \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| N \right\rangle \to \left| N \right\rangle + \sum\nolimits_j {{f_j}\left| {\lambda_j^0} \right\rangle } $\end{document} and similarly for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| {\tilde{N}} \right\rangle $\end{document} where fj are (n − 3)(n − 3)! arbitrary functions, encodes generalized gauge transformations. They yield both BCJ amplitude and KLT relations, when such freedom is accounted for. Furthermore, fj can be promoted to the role of effective Lagrangian vertices in the field operator space.
引用
收藏
相关论文
共 50 条
[1]  
Bern Z(2008)New relations for gauge-theory amplitudes Phys. Rev. D 78 085011-undefined
[2]  
Carrasco JJM(2010)Perturbative quantum gravity as a double copy of gauge theory Phys. Rev. Lett. 105 061602-undefined
[3]  
Johansson H(2010)Gravity as the square of gauge theory Phys. Rev. D 82 065003-undefined
[4]  
Bern Z(2009)Minimal basis for gauge theory amplitudes Phys. Rev. Lett. 103 161602-undefined
[5]  
Carrasco JJM(2005)Direct proof of tree-level recursion relation in Yang-Mills theory Phys. Rev. Lett. 94 181602-undefined
[6]  
Johansson H(2005)New recursion relations for tree amplitudes of gluons Nucl. Phys. B 715 499-undefined
[7]  
Bern Z(2006)QCD recursion relations from the largest time equation JHEP 04 030-undefined
[8]  
Dennen T(2000)New color decompositions for gauge amplitudes at tree and loop level Nucl. Phys. B 571 51-undefined
[9]  
Huang Y-t(1986)A relation between tree amplitudes of closed and open strings Nucl. Phys. B 269 1-undefined
[10]  
Kiermaier M(2000)On the coupling of gravitons to matter Phys. Rev. Lett. 84 3531-undefined