BL-algebra of fractions and maximal BL-algebra of quotients

被引:0
作者
Dumitru Buşneag
Dana Piciu
机构
[1] University of Craiova,Faculty of Mathematics and Computer Science
来源
Soft Computing | 2005年 / 9卷
关键词
-algebra; -algebra; Multiplier; -algebra of fractions; Maximal ; -algebra of quotients; 06D35; 03G25;
D O I
暂无
中图分类号
学科分类号
摘要
The scope of this paper is to define the notions of BL-algebra of multipliers, BL-algebra of fractions and maximal BL-algebra of quotients for a BL-algebra. The results obtained by authors are the generalization of the ones obtained for MV-algebras in [4]. In the last part of this paper is proved the existence of the maximal BL-algebra of quotients for a BL-algebra (Theorem 23) and we give explicit descriptions of this BL-algebra for some classes of BL-algebras.
引用
收藏
页码:544 / 555
页数:11
相关论文
共 13 条
[1]  
Buşneag D(1988)Hilbert algebra of fractions and maximal Hilbert algebras of quotients Kobe J Math 5 161-172
[2]  
Buşneag D(2003)On the lattice of deductive systems of a BL-algebra Central Eur J Math 1 221-238
[3]  
Piciu D(1958)Algebraic analysis of many valued logics Trans Amer Math Soc 88 467-490
[4]  
Chang CC(1974)The multiplier extension of a distributive lattice J Algebra 32 339-355
[5]  
Cornish WH(2002)Some classes of pseudo- BL algebras J Austr Math Soc 73 127-153
[6]  
Georgescu G(2002)Pseudo-BL-algebras, Part I Multiple Valued Logic 8 673-714
[7]  
Leustean L(1980)Multipliers on distributive lattices and rings of quotients Houston J Math 6 401-425
[8]  
Di Nola A(2001)Local BL-algebras Multiple Valued Logic 6 229-249
[9]  
Georgescu G(undefined)undefined undefined undefined undefined-undefined
[10]  
Iorgulescu A(undefined)undefined undefined undefined undefined-undefined