Small Deviations for a Family of Smooth Gaussian Processes

被引:0
作者
Frank Aurzada
Fuchang Gao
Thomas Kühn
Wenbo V. Li
Qi-Man Shao
机构
[1] Technische Universität Berlin,Institut für Mathematik
[2] University of Idaho,Department of Mathematics
[3] Universität Leipzig,Mathematisches Institut
[4] University of Delaware,Department of Mathematical Sciences
[5] Hong Kong University of Science and Technology,Department of Mathematics
来源
Journal of Theoretical Probability | 2013年 / 26卷
关键词
Small ball probability; Small deviation probability; Gaussian process; Self-similar process; Metric entropy; 60G15; 60F99; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials.
引用
收藏
页码:153 / 168
页数:15
相关论文
共 32 条
[1]  
Aurzada F.(2008)Small deviations of smooth stationary Gaussian processes Teor. Veroyatn. Primen. 53 788-798
[2]  
Ibragimov I.A.(2006)Compactness properties of certain integral operators related to fractional integration Math. Z. 252 669-686
[3]  
Lifshits M.A.(2008)On small deviations of series of weighted random variables J. Theor. Probab. 21 628-649
[4]  
van Zanten J.H.(2004)Entropy of absolute convex hulls in Hilbert spaces Bull. Lond. Math. Soc. 36 460-468
[5]  
Belinsky E.(2010)How many Laplace transforms of probability measures are there? Proc. Am. Math. Soc. 138 4331-4344
[6]  
Linde W.(1987)Geometric and probabilistic estimates for entropy and approximation numbers of operators J. Approx. Theory 49 219-239
[7]  
Borovkov A.A.(1984)Eigenvalues of integral operators defined by analytic kernels Math. Nachr. 119 141-155
[8]  
Ruzankin R.S.(1993)Metric entropy and the small ball problem for Gaussian measures J. Funct. Anal. 116 133-157
[9]  
Gao F.(2011)Covering numbers of Gaussian reproducing kernel Hilbert spaces J. Complex. 27 489-499
[10]  
Gao F.(1974)Spectral asymptotic behavior of a class of integral operators Mat. Zametki 16 741-750