共 122 条
[1]
Eskandari M(2016)Grain-Orientation-Dependent of γ–ε–α′ Transformation and Twinning in a Super-High-Strength, High Ductility Austenitic Mn-Steel Mater. Sci. Eng., A 674 514-3315
[2]
Zarei-Hanzaki A(2000)High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Developments-Properties-Application Int. J. Plast 16 1391-undefined
[3]
Mohtadi-Bonab MA(2011)High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships Curr. Opin. Solid State Mater. Sci. 15 141-undefined
[4]
Onuki Y(2012)Twinning-Induced Plasticity Steels Scr. Mater. 66 955-undefined
[5]
Basu R(2014)Microstructure Evolution and Mechanical Behavior of a New Microalloyed High Mn Austenitic Steel During Compressive Deformation Mater. Sci. Eng., A 615 424-undefined
[6]
Asghari A(2013)Effect of Hot Deformation of Austenite on Martensitic Transformation in High Manganese Steel J. Alloys Compd. 558 26-undefined
[7]
Szpunar JA(2007)Structure and Microstructure Evolution During Martensitic Transformation in Wrought Fe-26Mn-0.14C Austenitic Steel: An Effect of Cooling Rate J. Appl. Cryst. 40 354-undefined
[8]
Grassel O(2013)Effect of Cooling Rate on (ε, α′) Martensite Formation in Twinning/Transformation-Induced Plasticity Fe-17Mn-0.06C Steel Mater. Res. 16 6-undefined
[9]
Kruger L(2007)X-ray Diffraction Study on Cooling-Rate-Induced ɣfcc → εhcp Martensitic Transformation in Cast-Homogenized Fe-26Mn-0.14C Austenitic Steel Metall. Mater. Trans. A 38 1991-undefined
[10]
Frommeyer G(2008)Kinetics of the α’ Martensitic Transformation in Fine-Grained Fe-26Mn-0.14C Austenitic Steel Metall. Mater. Trans. A 39 462-undefined