A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer

被引:0
|
作者
Aiko Miyamura Ideta
Gouhei Tanaka
Takumi Takeuchi
Kazuyuki Aihara
机构
[1] ERATO Aihara Complexity Modelling Project,Institute of Industrial Science
[2] JST,Department of Urology
[3] University of Tokyo,undefined
[4] University of Tokyo,undefined
来源
Journal of Nonlinear Science | 2008年 / 18卷
关键词
Prostate cancer; Intermittent androgen suppression; Mathematical modeling; Hybrid systems; Hysteresis; Bifurcations; 34C55; 37G15; 65L07; 92C50; 93A30;
D O I
暂无
中图分类号
学科分类号
摘要
For several decades, androgen suppression has been the principal modality for treatment of advanced prostate cancer. Although the androgen deprivation is initially effective, most patients experience a relapse within several years due to the proliferation of so-called androgen-independent tumor cells. Bruchovsky et al. suggested in animal models that intermittent androgen suppression (IAS) can prolong the time to relapse when compared with continuous androgen suppression (CAS). Therefore, IAS has been expected to enhance clinical efficacy in conjunction with reduction in adverse effects and improvement in quality of life of patients during off-treatment periods. This paper presents a mathematical model that describes the growth of a prostate tumor under IAS therapy based on monitoring of the serum prostate-specific antigen (PSA). By treating the cancer tumor as a mixed assembly of androgen-dependent and androgen-independent cells, we investigate the difference between CAS and IAS with respect to factors affecting an androgen-independent relapse. Numerical and bifurcation analyses show how the tumor growth and the relapse time are influenced by the net growth rate of the androgen-independent cells, a protocol of the IAS therapy, and the mutation rate from androgen-dependent cells to androgen-independent ones.
引用
收藏
相关论文
共 50 条
  • [1] A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer
    Ideta, Aiko Miyamura
    Tanaka, Gouhei
    Takeuchi, Takumi
    Aihara, Kazuyuki
    JOURNAL OF NONLINEAR SCIENCE, 2008, 18 (06) : 593 - 614
  • [2] Comparison between mathematical models of intermittent androgen suppression for prostate cancer
    Hatano, Takurna
    Hirata, Yoshito
    Suzuki, Hideyuki
    Aihara, Kazuyuki
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 366 : 33 - 45
  • [3] Intermittent androgen suppression for prostate cancer
    Buchan, Nicholas C.
    Goldenberg, S. Larry
    NATURE REVIEWS UROLOGY, 2010, 7 (10) : 552 - 560
  • [4] Intermittent androgen suppression for prostate cancer
    Nicholas C. Buchan
    S. Larry Goldenberg
    Nature Reviews Urology, 2010, 7 : 552 - 560
  • [5] Control of a prostate cancer model using intermittent androgen suppression
    Costa, Bertinho A.
    Lemos, Joao M.
    2018 13TH APCA INTERNATIONAL CONFERENCE ON CONTROL AND SOFT COMPUTING (CONTROLO), 2018, : 282 - 287
  • [6] MATHEMATICAL MODELING OF CONTINUOUS AND INTERMITTENT ANDROGEN SUPPRESSION FOR THE TREATMENT OF ADVANCED PROSTATE CANCER
    Voth, Alacia M.
    Alford, John G.
    Swim, Edward W.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (03) : 777 - 804
  • [7] Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy
    Baez, Javier
    Kuang, Yang
    APPLIED SCIENCES-BASEL, 2016, 6 (11):
  • [8] A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy
    Portz, Travis
    Kuang, Yang
    Nagy, John D.
    AIP ADVANCES, 2012, 2 (01):
  • [9] Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer
    Guo, Qian
    Lu, Zhichang
    Hirata, Yoshito
    Aihara, Kazuyuki
    CHAOS, 2013, 23 (04)
  • [10] Intermittent androgen suppression in the management of prostate cancer
    Crook, JM
    Szumacher, E
    Malone, S
    Huan, S
    Segal, R
    UROLOGY, 1999, 53 (03) : 530 - 534