Exponential Attractor for the Viscoelastic Wave Model with Time-Dependent Memory Kernels

被引:0
作者
Yanan Li
Zhijian Yang
机构
[1] Harbin Engineering University,College of Mathematical Sciences
[2] Zhengzhou University,School of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
Viscoelastic wave model; Time-dependent memory kernel; Exponential attractors; Time-dependent phase spaces; Longtime behavior of solutions; 37L30; 37L45; 35B40; 35B41; 35L10;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with the exponential attractors for the viscoelastic wave model in Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset \mathbb R^3$$\end{document}: utt-ht(0)Δu-∫0∞∂sht(s)Δu(t-s)ds+f(u)=g,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{tt}-h_t(0)\varDelta u-\int _0^\infty \partial _sh_t(s)\varDelta u(t-s)\mathrm ds+f(u)=g, \end{aligned}$$\end{document}with time-dependent memory kernel ht(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_t(\cdot )$$\end{document} which is used to model aging phenomena of the material. Conti et al. (Am J Math 140(2):349–389, 2018a; Am J Math 140(6):1687–1729, 2018b) recently provided the correct mathematical setting for the model and a well-posedness result within the novel theory of dynamical systems acting on time-dependent spaces, recently established by Conti et al. (J Differ Equ 255:1254–1277, 2013), and proved the existence and the regularity of the time-dependent global attractor. In this work, we further study the existence of the time-dependent exponential attractors as well as their regularity. We establish an abstract existence criterion via quasi-stability method introduced originally by Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004), and on the basis of the theory and technique developed in Conti et al. (2018a, b) we further provide a new method to overcome the difficulty of the lack of further regularity to show the existence of the time-dependent exponential attractor. And these techniques can be used to tackle other hyperbolic models.
引用
收藏
页码:679 / 707
页数:28
相关论文
共 41 条
[1]  
Chepyzhov VV(2012)A minimal approach to the theory of global attractor Discrete Contin. Dyn. Syst. 32 2079-2088
[2]  
Conti M(2004)Attractors for second order evolution equations with nonlinear damping J. Dyn. Differ. Equ. 16 469-512
[3]  
Pata V(2013)Attractors for the processes on time-dependent spaces. Application to wave equations J. Differ. Equ. 255 1254-1277
[4]  
Chueshov I(2018)A model of viscoelasticity with time-dependent memory kernels Am. J. Math. 140 349-389
[5]  
Lasiecka I(2018)Viscoelasticity with time-dependent memory kernels, II: asymptotical behavior of solutions Am. J. Math. 140 1687-1729
[6]  
Conti M(2015)Exponential attractors for abstract equations with memory and applications to viscoelasticity Discrete Contin. Dyn. Syst. 35 2881-2904
[7]  
Pata V(1970)Asymptotic stability in viscoelasticity Arch. Rational Mech. Anal. 37 297-308
[8]  
Temam R(2011)Long-term analysis of strongly damped nonlinear wave equations Nonlinearity 24 3413-3435
[9]  
Conti M(2000)Exponential attractors for a nonlinear reaction-diffusion system in C. R. Acad. Sci. Paris Sér. I Math. 330 713-718
[10]  
Danese V(2005)Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems Proc. R. Soc. Edinb. Sect. A 13 703-730