A New Approach to Synchronization Analysis of Linearly Coupled Map Lattices*

被引:1
作者
Wenlian Lu
Tianping Chen
机构
[1] Fudan University,School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Sciences
[2] Fudan University,School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Sciences
来源
Chinese Annals of Mathematics, Series B | 2007年 / 28卷
关键词
Linearly coupled map lattices; Synchronization; Synchronization manifold; Local stability of synchronization manifold; Global stability of synchronization manifold; 93A; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new approach to analyze synchronization of linearly coupled map lattices (LCMLs) is presented. A reference vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\hat\else\expandafter\^\fi{x} $$\end{document}(t) is introduced as the projection of the trajectory of the coupled system on the synchronization manifold. The stability analysis of the synchronization manifold can be regarded as investigating the difference between the trajectory and the projection. By this method, some criteria are given for both local and global synchronization. These criteria indicate that the left and right eigenvectors corresponding to the eigenvalue "0" of the coupling matrix play key roles in the stability of synchronization manifold for the coupled system. Moreover, it is revealed that the stability of synchronization manifold for the coupled system is different from the stability for dynamical system in usual sense. That is, the solution of the coupled system does not converge to a certain knowable s(t) satisfying s(t+1) = f(s(t)) but to the reference vector on the synchronization manifold, which in fact is a certain weighted average of each xi(t) for i = 1, ⋯ ,m, but not a solution s(t) satisfying s(t + 1) = f(s(t)).
引用
收藏
页码:149 / 160
页数:11
相关论文
共 16 条
[1]  
Strogatz undefined(1993)undefined Sci. Am. 269 102-undefined
[2]  
Gray undefined(1994)undefined J. Comput. Neurosci. 1 11-undefined
[3]  
Glass undefined(2001)undefined Nature 410 277-undefined
[4]  
Millerioux undefined(2003)undefined IEEE Trans. Circuits Syst.-I 50 1270-undefined
[5]  
Vieira undefined(1999)undefined Phys. Rev. Lett. 82 201-undefined
[6]  
Pecora undefined(1990)undefined Phys. Rev. Lett. 64 821-undefined
[7]  
Mirollo undefined(1990)undefined SIAM, J. Appl. Math. 50 1645-undefined
[8]  
Heagy undefined(1994)undefined Phys. Rev. E 50 1874-undefined
[9]  
Bohr undefined(1989)undefined Phys. Rev. Lett. 63 2161-undefined
[10]  
Kaneko undefined(1985)undefined Prog. Theor. Phys. 74 1033-undefined