The limit as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document} for the eigenvalue problem of the 1-homogeneous \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian

被引:0
作者
Pedro J. Martínez-Aparicio
Mayte Pérez-Llanos
Julio D. Rossi
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
[2] Universidad Autonoma de Madrid,Departamento de Matemáticas
[3] Universidad de Alicante,Departamento de Análisis Matemático
[4] UBA,Departamento de Matemática, FCEyN
关键词
Infinity Laplacian; -Homogeneous ; -Laplacian; 35A02; 35B51; 35J60;
D O I
10.1007/s13163-013-0124-4
中图分类号
学科分类号
摘要
In this paper we study asymptotics as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document} of the Dirichlet eigenvalue problem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-homogeneous \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian, that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\frac{1}{p} |D u|^{2-p}\mathrm{div}\,(|D u|^{p-2}Du)=\lambda u, &{}\text{ in }\;\Omega ,\\ u=0,&{}\text{ on }\;\partial \Omega . \end{array}\right. \end{aligned}$$\end{document}Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded starshaped domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^n$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>n$$\end{document}. There exists a principal eigenvalue \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1,p} (\Omega )$$\end{document}, which is positive, and has associated a non-negative nontrivial eigenfunction. Moreover, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{p\rightarrow \infty }\lambda _{1,p}(\Omega )= \lambda _{1,\infty }(\Omega ) $$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1,\infty }(\Omega )$$\end{document} is the first eigenvalue corresponding to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-homogeneous infinity Laplacian, that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\left( D^2u\frac{Du}{|Du|}\right) \cdot \frac{Du}{|Du|} =\lambda u$$\end{document}.
引用
收藏
页码:241 / 258
页数:17
相关论文
共 35 条
[1]  
Aronsson G(2004)A tour of the theory of absolutely minimizing functions Bull. Am. Math. Soc. 41 439-505
[2]  
Crandall MG(2001)Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term Comm. Partial Differ. Equ. 26 2323-2337
[3]  
Juutinen P(1994)The principal eigenvalue and maximum principle for second-order elliptic operators in general domains Comm. Pure Appl. Math. 47 47-92
[4]  
Barles G(2006)First eigenvalue and maximum principle for fully nonlinear singular operators Adv. Differ. Equ. 11 91-119
[5]  
Busca J(2007)Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators Commun. Pure Appl. Anal. 6 335-366
[6]  
Berestycki H(1992)User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc. 27 1-67
[7]  
Nirenberg L(1993)Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient Arch. Ration. Mech. Anal. 123 51-74
[8]  
Varadhan SRS(2007)Principal eigenvalue of a very badly degenerate operator and applications J. Differ. Equ. 236 532-550
[9]  
Birindelli I(2001)On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation SIAM J. Math. Anal. 33 699-717
[10]  
Demengel F(1999)The Arch. Ration. Mech. Anal. 148 89-105