Radically distributed value and normal families of meromorphic functions

被引:0
作者
Jianming Qi
Guowei Zhang
Wenjun Yuan
机构
[1] Shanghai Dianji University,Department of Mathematics and Physics
[2] Guangzhou University,School of Mathematics and Information Sciences
[3] Anyang Normal University,Department of Mathematics
[4] Guangzhou University,Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes
来源
Frontiers of Mathematics in China | 2014年 / 9卷
关键词
Meromorphic function; Nevanlinna theory; normal family; angular characteristic function; radially distributed value; 30D45; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.
引用
收藏
页码:355 / 376
页数:21
相关论文
共 23 条
[1]  
Baernstein A(1973)Proof of Edrei’s spread conjecture Proc Lond Math Soc 26 418-434
[2]  
Bergweiler W(1995)On the singularities of the inverse to a meromorphic function of finite order Rev Mat Iberoam 11 355-373
[3]  
Eremenko A(2011)on the growth of meromorphic functions with a radially distributed value Indian J Pure Appl Math 42 53-70
[4]  
Chen S J(1951)Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa dérivée Bull Sci Math 75 171-190
[5]  
Lin W C(1955)Meromorphic functions with three radially distributed values Trans Amer Math Soc 78 276-293
[6]  
Chen J F(1965)Sums of deficiencies of meromorphic function J Analyse Math 14 79-107
[7]  
Chuang C T(2008)On value distribution of Sci China Ser A 38 279-285
[8]  
Edrei A(1989) + Complex Variables 12 245-260
[9]  
Edrei A(1925)( Acta Soc Sci Feen 50 1-45
[10]  
Fang M L(2000)) Bull Lond Math Soc 32 325-331