Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion

被引:0
作者
Maud Delattre
Valentine Genon-Catalot
Catherine Larédo
机构
[1] Université Paris-Saclay,UMR MIA
[2] UMR CNRS 8145,Paris, AgroParisTech, INRA
[3] Laboratoire MAP5,undefined
[4] Université Paris Descartes,undefined
[5] Sorbonne Paris Cité,undefined
[6] INRA,undefined
[7] MaIAGE,undefined
[8] LPMA,undefined
[9] Paris Diderot,undefined
[10] Sorbonne Paris Cité,undefined
来源
Metrika | 2018年 / 81卷
关键词
Asymptotic properties; Discrete observations; Estimating equations; Parametric inference; Random effects models; Stochastic differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
Consider N independent stochastic processes (Xi(t),t∈[0,T])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_i(t), t\in [0,T])$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, defined by a stochastic differential equation with random effects where the drift term depends linearly on a random vector Φi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _i$$\end{document} and the diffusion coefficient depends on another linear random effect Ψi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _i$$\end{document}. For these effects, we consider a joint parametric distribution. We propose and study two approximate likelihoods for estimating the parameters of this joint distribution based on discrete observations of the processes on a fixed time interval. Consistent and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N}$$\end{document}-asymptotically Gaussian estimators are obtained when both the number of individuals and the number of observations per individual tend to infinity. The estimation methods are investigated on simulated data and show good performances.
引用
收藏
页码:953 / 983
页数:30
相关论文
共 39 条
[1]  
Berglund M.(2011)Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations Mathematical Medicine and Biology 29 361-384
[2]  
Sunnaker M.(2018)Parametric inference for discrete observations of diffusion processes with mixed effects Stochastic Processes and their Applications 128 1929-1957
[3]  
Adiels M.(2013)Maximum likelihood estimation for stochastic differential equations with random effects Scand J Stat 40 322-343
[4]  
Jirstrand M.(2015)Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient ESAIM Probab Stat 19 671-688
[5]  
Wennberg B.(2013)Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models Stat Interface 6 519-532
[6]  
Delattre Maud(2016)Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model Metrika 79 919-951
[7]  
Genon-Catalot Valentine(2005)Mixed effects in stochastic differential equation models REVSTAT Stat J 3 137-153
[8]  
Larédo Catherine(2008)Parametric inference for mixed models defined by stochastic differential equations ESAIM P&S 12 196-218
[9]  
Delattre M(2015)Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats The AAPS Journal 17 586-596
[10]  
Genon-Catalot V(2006)Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models Metrika 63 123-143