An Alternative Definition of Topological Entropy for Amenable Group Actions

被引:0
作者
Haiyan Wu
Zhiming Li
机构
[1] Northwest University,School of Mathematics
来源
Journal of Dynamical and Control Systems | 2022年 / 28卷
关键词
Topological entropy; Amenable group action; Infinite product spaces; 37A35; 37B40;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the definition of topological entropy for any (not necessarily continuous) amenable groups acting on a compact space by defining entropy of arbitrary subsets of a product space. We investigate how this new notion of topological entropy for amenable group actions behaves and some of its basic properties; among them are the behavior of the entropy with respect to disjoint union, Cartesian product, and some continuity properties with respect to Vietoris topology. As a special case for 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq p\leq \infty $\end{document}, the Bowen p-entropy of sets is introduced. It is shown that the notions of generalized topological entropy and Bowen ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\infty $\end{document}-entropy for compact metric spaces coincide.
引用
收藏
页码:333 / 349
页数:16
相关论文
共 44 条
[1]  
Adler RL(1965)Topological entropy Trans Am Math Soc 114 309-319
[2]  
Konheim AG(1971)Entropy for group endomorphisms and homogeneous spaces Trans Am Math Soc 153 401-14
[3]  
McAndrew MH(2012)Sofic entropy and amenable groups Ergod Theory Dyn Syst 32 427-66
[4]  
Bowen R(2020)Examples in the entropy theory of countable group actions Ergod Theory Dyn Syst 40 2593-680
[5]  
Bowen L(2013)Pointwise ergodic theorems beyond amenable groups Ergod Theory Dyn Syst 33 777-820
[6]  
Bowen L(2004)Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions J Funct Anal 217 181-91
[7]  
Bowen L(2002)The spectrum of completely positive entropy actions of countable amenable groups J Funct Anal 196 1-18
[8]  
Nevo A(2006)Fuglede-Kadison determinants and entropy for actions of discrete amenable groups J Am Math Soc 19 737-58
[9]  
Choda M(2018)A note on dimensional entropy for amenable group Actions Topol Methods Nonlinear Anal 51 599-608
[10]  
Dooley AH(1971)A connection between various entropy characterizations of dynamical systems Izv Akad Nauk SSSR 35 324-66