Vahlen groups defined over commutative rings

被引:0
|
作者
Justin McInroy
机构
[1] University of Bristol,Heilbronn Institute for Mathematical Research, School of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 284卷
关键词
Vahlen group; Clifford algebras; Commutative rings ; Orthogonal; Automorphic forms; 15A66; 20H25; 11F99;
D O I
暂无
中图分类号
学科分类号
摘要
Elements of a Vahlen group are 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} matrices with entries in a Clifford algebra satisfying some conditions. They play a central role in the theory of higher dimensional harmonic automorphic forms. Traditionally they have come in both ordinary and paravector type and have been defined (over Clifford algebras) over the real or complex numbers. We extend the definition of both types to be over a commutative ring with an arbitrary quadratic form. We show that they are indeed groups and identify in each case the group as the pin group, spin group, or another subgroup of the Clifford group. Under some mild conditions, for both types we show the equivalence of our definition with a suitably generalised version of the two standard definitions.
引用
收藏
页码:901 / 917
页数:16
相关论文
共 50 条
  • [41] τ-REGULAR FACTORIZATION IN COMMUTATIVE RINGS WITH ZERO-DIVISORS
    Mooney, Christopher Park
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (04) : 1309 - 1349
  • [42] On 2-absorbing commutative semigroups and their applications to rings
    Darani, A. Yousefian
    Puczylowski, E. R.
    SEMIGROUP FORUM, 2013, 86 (01) : 83 - 91
  • [43] Co-maximal graph of non-commutative rings
    Wang, Hsin-Ju
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 633 - 641
  • [44] On domination numbers of zero-divisor graphs of commutative rings
    Anderson, Sarah E.
    Axtell, Michael C.
    Kroschel, Brenda K.
    Stickles, Joe A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) : 169 - 180
  • [45] Commutative rings whose ideals form an MV-algebra
    Belluce, Lawrence P.
    Di Nola, Antonio
    MATHEMATICAL LOGIC QUARTERLY, 2009, 55 (05) : 468 - 486
  • [46] Minimal Non-Commutative n-Insertive Rings
    Li Qiong Xu
    Wei Min Xue
    Acta Mathematica Sinica, 2003, 19 : 141 - 146
  • [47] Automorphisms of Chevalley groups of type F4 over local rings with 1/2
    Bunina, E. I.
    JOURNAL OF ALGEBRA, 2010, 323 (08) : 2270 - 2289
  • [48] On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
    Rather, Bilal A.
    Aijaz, M.
    Ali, Fawad
    Mlaiki, Nabil
    Ullah, Asad
    AIMS MATHEMATICS, 2022, 7 (07): : 12635 - 12649
  • [49] SIMPLE ALGEBRAIC EXTENSIONS OF COMMUTATIVE RINGS WITHOUT NILPOTENT OR IDEMPOTENT ELEMENTS
    Mihovski, Stoil V.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (12): : 1631 - 1640
  • [50] On the Non-Zero Divisor Graphs of Some Finite Commutative Rings
    Zai, N. A. F. O.
    Sarmin, N. H.
    Khasraw, S. M. S.
    Gambo, I.
    Zaid, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 105 - 112