Vahlen groups defined over commutative rings

被引:0
|
作者
Justin McInroy
机构
[1] University of Bristol,Heilbronn Institute for Mathematical Research, School of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 284卷
关键词
Vahlen group; Clifford algebras; Commutative rings ; Orthogonal; Automorphic forms; 15A66; 20H25; 11F99;
D O I
暂无
中图分类号
学科分类号
摘要
Elements of a Vahlen group are 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} matrices with entries in a Clifford algebra satisfying some conditions. They play a central role in the theory of higher dimensional harmonic automorphic forms. Traditionally they have come in both ordinary and paravector type and have been defined (over Clifford algebras) over the real or complex numbers. We extend the definition of both types to be over a commutative ring with an arbitrary quadratic form. We show that they are indeed groups and identify in each case the group as the pin group, spin group, or another subgroup of the Clifford group. Under some mild conditions, for both types we show the equivalence of our definition with a suitably generalised version of the two standard definitions.
引用
收藏
页码:901 / 917
页数:16
相关论文
共 50 条
  • [1] Vahlen groups defined over commutative rings
    McInroy, Justin
    MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) : 901 - 917
  • [2] Automorphisms of Chevalley groups over commutative rings
    Bunina, Elena
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2313 - 2327
  • [3] ON MODULES OVER COMMUTATIVE RINGS
    Fuchs, Laszlo
    Lee, Sang Bum
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (03) : 341 - 356
  • [4] Rigid Dualizing Complexes Over Commutative Rings
    Amnon Yekutieli
    James J. Zhang
    Algebras and Representation Theory, 2009, 12
  • [5] Rigid Dualizing Complexes Over Commutative Rings
    Yekutieli, Amnon
    Zhang, James J.
    ALGEBRAS AND REPRESENTATION THEORY, 2009, 12 (01) : 19 - 52
  • [6] Matrices over commutative rings as sums of higher powers
    Muangma, Kunlathida
    Rodtes, Kijti
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (02): : 296 - 324
  • [7] THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS
    Ansari-Toroghy, Habibollah
    Habibi, Shokoufeh
    MATHEMATICAL REPORTS, 2018, 20 (03): : 245 - 262
  • [8] Zero-Divisor Graphs of Matrices Over Commutative Rings
    Bozic, Ivana
    Petrovic, Zoran
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1186 - 1192
  • [9] Square-zero derivations of matrix algebras over commutative rings
    Zhou, Jinming
    Wang, Dengyin
    Zhang, Qinghua
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 239 - 243
  • [10] On semivalues on commutative rings
    Bernardes, Nilson C., Jr.
    Pombo, Dinamerico P., Jr.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (02) : 245 - 249