Color Grosse–Wulkenhaar models: one-loop β-functions

被引:0
作者
Joseph Ben Geloun
Vincent Rivasseau
机构
[1] Université d’Abomey-Calavi,International Chair of Mathematical Physics and Applications, ICMPA
[2] Université Cheikh Anta Diop,UNESCO Chair
[3] Université Paris-Sud X1,Faculté des Sciences et Techniques
来源
The European Physical Journal C | 2008年 / 58卷
关键词
02.40.Gh; 11.10.Nx;
D O I
暂无
中图分类号
学科分类号
摘要
The β-functions of O(N) and U(N) invariant Grosse–Wulkenhaar models are computed at one loop using the matrix basis. In particular, for “parallel interactions”, the model is proved to be asymptotically free in the UV limit for N>1, and it has a triviality problem or Landau ghost for N<1. The vanishing β-function is recovered solely at N=1. We discuss various possible consequences of these results.
引用
收藏
页码:115 / 122
页数:7
相关论文
共 40 条
  • [1] Douglas M.R.(2001)Non-commutative field theory Rev. Mod. Phys. 73 977-1029
  • [2] Nekrasov N.A.(2003)Quantum field theory on non-commutative spaces Phys. Rep. 378 207-299
  • [3] Szabo R.J.(2005)Renormalization of Commun. Math. Phys. 256 305-374
  • [4] Grosse H.(2005)-theory on non commutative ℝ Commun. Math. Phys. 254 91-127
  • [5] Wulkenhaar R.(2005) in the matrix base Lett. Math. Phys. 71 13-177
  • [6] Grosse H.(2002)Power-counting theorem for non-local matrix models and renormalization Phys. Lett. B 533 168-594
  • [7] Wulkenhaar R.(2006)Renormalisation of Commun. Math. Phys. 262 565-282
  • [8] Grosse H.(2004) theory on non-commutative ℝ Eur. Phys. J. C 35 277-542
  • [9] Wulkenhaar R.(2006) to all orders Commun. Math. Phys. 267 515-835
  • [10] Langmann E.(2007)Duality in scalar field theory on non-commutative phase spaces Commun. Math. Phys. 272 811-671