Norm and numerical radius inequalities for sum of operators

被引:0
作者
Ali Zand Vakili
Ali Farokhinia
机构
[1] Islamic Azad University,Department of Mathematics, Shiraz Branch
来源
Bollettino dell'Unione Matematica Italiana | 2021年 / 14卷
关键词
Bounded linear operators; Numerical radius; Operator norm; Inequality; 47A12; 47A30; 47A63;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present several numerical radius and norm inequalities for sum of Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator T ∈ B(H), we prove thatω2T≤12ωT2+122ωT2+iT*2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\omega}^{2} \left( T \right) \le \frac{1}{2}\omega \left( {T^{2} } \right) + \frac{1}{{2\sqrt 2 }}\omega \left( {\left| T \right|^{2} + i\left| {T^{\ast} } \right|^{2} } \right) .$$\end{document}
引用
收藏
页码:647 / 657
页数:10
相关论文
共 26 条
[1]  
Aujla JS(2003)Weak majorization inequalities and convex functions Linear Algebra Appl. 369 217-233
[2]  
Silva FC(2020)Bounds of numerical radius of bounded linear operator usingt-Aluthge transform Math. Inequal. Appl. 23 991-1004
[3]  
Bag S(2021)New upper bounds for the numerical radius of Hilbert space operators Bull. Sci. Math. 167 102959-183
[4]  
Bhunia P(2021)Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices Math. Inequal. Appl. 24 167-177
[5]  
Paul K(2019)Numerical radius inequalities and its applications in estimation of zeros of polynomials Linear Algebra Appl. 573 166-278
[6]  
Bhunia P(2009)Power inequalities for the numerical radius of a product of two operators in Hilbert spaces Sarajevo J. Math. 5 269-7
[7]  
Paul K(2008)Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces Tamkang J. Math. 39 1-151
[8]  
Bhunia P(2018)A note on numerical radius and the Krein-Lin inequality Mathematica 60 149-1125
[9]  
Paul K(2020)Cauchy-Schwarz type inequalities and applications to numerical radius inequalities Math. Inequal. Appl. 23 1117-293
[10]  
Nayak RK(1988)Notes on some inequalities for Hilbert Space operators Publ. Res. Inst. Math. Sci. 24 283-80