Commutative semigroups whose endomorphisms are power functions

被引:0
|
作者
Ryszard Mazurek
机构
[1] Bialystok University of Technology,Faculty of Computer Science
来源
Semigroup Forum | 2021年 / 102卷
关键词
Commutative semigroup; ACCP-semigroup; Atomic monoid; Finitely generated commutative semigroup; Power function; Endomorphism;
D O I
暂无
中图分类号
学科分类号
摘要
For any commutative semigroup S and positive integer m the power function f:S→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: S \rightarrow S$$\end{document} defined by f(x)=xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = x^m$$\end{document} is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.
引用
收藏
页码:737 / 755
页数:18
相关论文
共 50 条