Commutative semigroups whose endomorphisms are power functions

被引:0
|
作者
Ryszard Mazurek
机构
[1] Bialystok University of Technology,Faculty of Computer Science
来源
Semigroup Forum | 2021年 / 102卷
关键词
Commutative semigroup; ACCP-semigroup; Atomic monoid; Finitely generated commutative semigroup; Power function; Endomorphism;
D O I
暂无
中图分类号
学科分类号
摘要
For any commutative semigroup S and positive integer m the power function f:S→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: S \rightarrow S$$\end{document} defined by f(x)=xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = x^m$$\end{document} is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.
引用
收藏
页码:737 / 755
页数:18
相关论文
共 50 条
  • [21] Commutative semigroups with few invariant congruences
    El Bashir, R
    Kepka, T
    SEMIGROUP FORUM, 2002, 64 (03) : 453 - 471
  • [22] Endomorphism monoids in varieties of commutative semigroups
    M. Demlová
    V. Koubek
    J. Sichler
    Semigroup Forum, 2013, 87 : 351 - 376
  • [23] THE RANKS OF PLANARITY FOR VARIETIES OF COMMUTATIVE SEMIGROUPS
    Solomatin, D. V.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 34 (04): : 50 - 64
  • [24] Commutative Noetherian semigroups are finitely generated
    Brookfield, G
    SEMIGROUP FORUM, 2003, 66 (02) : 323 - 327
  • [25] Characterizing categorically closed commutative semigroups
    Banakh, Taras
    Bardyla, Serhii
    JOURNAL OF ALGEBRA, 2022, 591 : 84 - 110
  • [26] WEAKLY PRIME IDEALS IN COMMUTATIVE SEMIGROUPS
    Anderson, D. D.
    Chun, Sangmin
    Juett, Jason R.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 829 - 839
  • [27] Endomorphism monoids in varieties of commutative semigroups
    Demlova, M.
    Koubek, V.
    Sichler, J.
    SEMIGROUP FORUM, 2013, 87 (02) : 351 - 376
  • [28] Partial-isometric crossed products by semigroups of endomorphisms
    Lindiarni, J
    Raeburn, I
    JOURNAL OF OPERATOR THEORY, 2004, 52 (01) : 61 - 87
  • [29] Split graphs whose regular endomorphisms form a monoid
    Hou, Hailong
    Gu, Rui
    Shang, Youlin
    ARS COMBINATORIA, 2014, 113A : 161 - 169
  • [30] Graphs whose completely regular endomorphisms form a monoid
    Gu, Rui
    Tong, Mengdi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 904 - 913