Spectrum, Asymptotic Invertibility and Szegö Type Theorems of Dirichlet Toeplitz Operators

被引:0
作者
Hongzhao Lin
Ziliang Zhang
Dechao Zheng
机构
[1] Fujian Agriculture and Forestry University,College of Computer and Information Sciences
[2] Vanderbilt University,Department of Mathematics
[3] Chongqing University,Center of Mathematics
来源
Integral Equations and Operator Theory | 2018年 / 90卷
关键词
Toeplitz operator; Dirichlet space; Essential spectrum; Spectrum; Asymptotic invertibility; Determinant; Primary 47B35; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the spectrum and essential spectrum of Toeplitz operators on the Dirichlet space. Also a criterion of the asymptotic invertibility of Dirichlet Toeplitz operators and the Szegö type theorems of Dirichlet Toeplitz determinants are established.
引用
收藏
相关论文
共 26 条
[1]  
Borodin A(2000)A Fredholm determinant formula for Toeplitz determinants Integr. Equ. Oper. Theory 37 386-396
[2]  
Okounkov A(1999)Fredholm properties of Toeplitz operators on Dirichlet spaces Pac. J. Math. 188 209-223
[3]  
Cao G(2010)Toeplitz and Hankel operators with J. Math. Anal. Appl. 369 368-376
[4]  
Chen Y(1979) symbols on Dirichlet space J. Math. Phys. 20 299-310
[5]  
Nguyen QD(1964)Scattering theory and polynomials orthogonal on the unit circle Trans. Am. Math. Soc. 112 304-317
[6]  
Case KM(2007)Toeplitz operators on J. Math. Anal. Appl. 329 1316-1329
[7]  
Geronimo JS(2011) spaces Integr. Equ. Oper. Theory 71 275-302
[8]  
Devinatz A(1992)Algebraic properties of Toeplitz operators on the Dirichlet space Integr. Equ. Oper. Theory 15 325-342
[9]  
Lee YJ(1981)Sums of products of Toeplitz and Hankel operators on the Dirichlet space Math. Nachr. 104 137-146
[10]  
Lee YJ(1992)Toeplitz operators on Dirichlet spaces Trans. Am. Math. Soc. 329 773-794