On the approximation of Kähler manifolds by algebraic varieties

被引:0
作者
Junyan Cao
机构
[1] Université de Grenoble I,
[2] Institut Fourier,undefined
来源
Mathematische Annalen | 2015年 / 363卷
关键词
14D06; 14E30; 14J40; 32J25; 32J27; 32L20;
D O I
暂无
中图分类号
学科分类号
摘要
It has been shown by Claire Voisin in 2003 that one cannot always deform a compact Kähler manifold into a projective algebraic manifold, thereby answering negatively a question raised by Kodaira. In this article, we prove that under an additional semipositivity or seminegativity condition on the canonical bundle, the answer becomes positive, namely such a compact Kähler manifold can be approximated by deformations of projective manifolds.
引用
收藏
页码:393 / 422
页数:29
相关论文
共 23 条
[1]  
Boucksom S(2013)The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension J. Algebr. Geom. 22 201-248
[2]  
Demailly J-P(2009)Curvature of vector bundles associated to holomorphic fibrations Ann. Math. (2) 169 531-560
[3]  
Păun M(2006)Algebraic deformations of compact Kähler surfaces Math. Z. 253 453-459
[4]  
Peternell T(2008)Algebraic deformations of compact Kähler surfaces. II Math. Z. 258 493-498
[5]  
Berndtsson B(2004)Numerical characterization of the Kähler cone of a compact Kähler manifold Ann. Math. (2) 159 1247-1274
[6]  
Buchdahl N(1994)Compact complex manifolds with numerically effective tangent bundles J. Algebr. Geom. 3 295-345
[7]  
Buchdahl N(1996)Compact Kähler manifolds with Hermitian semipositive anticanonical bundle Composit. Math. 101 217-224
[8]  
Demailly J-P(1997)Images directes de fibrés en droites adjoints Publ. Res. Inst. Math. Sci. 33 893-916
[9]  
Paun M(1984)Vanishing theorems on complete Kähler manifolds Publ. Res. Inst. Math. Sci. 20 21-38
[10]  
Demailly J-P(1992)Deformations of manifolds with torsion or negative canonical bundle J. Algebr. Geom. 1 279-291