A direct global superconvergence analysis for Sobolev and viscoelasticity type equations

被引:13
作者
Lin Q. [1 ]
Zhang S. [1 ]
机构
[1] Institute of Systems Science, Academia Sinica
关键词
Direct analysis; Global superconvergence; Sobolev and viscoelasticity type equations;
D O I
10.1023/A:1022288409629
中图分类号
学科分类号
摘要
In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms.
引用
收藏
页码:23 / 34
页数:11
相关论文
共 16 条
  • [1] Arnold D., Douglas J., Thomee V., Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp., 36, pp. 53-63, (1981)
  • [2] Ewing R., The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J. Math. Anal., 6, pp. 283-294, (1975)
  • [3] Ewing R., Numerical solution of Sobolev partial differential eqautions, SIAM J. Numer. Anal., 12, pp. 345-363, (1975)
  • [4] Ford W., Galerkin approximation to nonlinear pseudoparabolic partial differential equation, Aequationes Math., 14, pp. 271-291, (1976)
  • [5] Ford W., Ting T., Stability and convergence of difference approximations to pseudoparabolic partial equations, Math. Comp., 27, pp. 737-743, (1973)
  • [6] Ford W., Ting T., Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations, SIAM J. Numer. Anal., 11, pp. 155-169, (1974)
  • [7] Lin Q., A new observation in FEM, Proc. Syst. Sci. & Syst. Eng., pp. 389-391, (1991)
  • [8] Lin Q., Yan N., Zhou A., A rectangle test for interpolated finite elements, Proc. Syst. Sci. & Syst. Eng.
  • [9] Lin Q., Zhang S., An immediate analysis for global superconvergence for integrodifferential equations, Appl. Math., 42, pp. 1-21, (1997)
  • [10] Lin Y., Galerkin methods for nonlinear Sobolev equations, Aequations Math., 40, pp. 54-56, (1990)