Refinements of Berry–Esseen Inequalities in Terms of Lyapunov Coefficients

被引:0
作者
Sergey G. Bobkov
机构
[1] University of Minnesota,School of Mathematics
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Central limit theorem; Berry–Esseen inequality; Fourier–Stieltjes transform; Primary 60E; 60F;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss some variants of the Berry–Esseen inequality in terms of Lyapunov coefficients which may provide sharp rates of normal approximation.
引用
收藏
相关论文
共 50 条
[21]   The Discounted Berry-Esseen Analogue for Autoregressive Processes [J].
Miao, Yu ;
Xue, Tianyu ;
Du, Tian .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) :2684-2693
[22]   BERRY-ESSEEN THEOREMS UNDER WEAK DEPENDENCE [J].
Jirak, Moritz .
ANNALS OF PROBABILITY, 2016, 44 (03) :2024-2063
[23]   ON THE UPPER BOUND FOR THE ABSOLUTE CONSTANT IN THE BERRY-ESSEEN INEQUALITY [J].
Korolev, V. Yu. ;
Shevtsova, I. G. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2010, 54 (04) :638-658
[24]   Berry-Esseen inequality for linear processes in Hilbert spaces [J].
Bosq, D .
STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) :243-247
[25]   Berry-Esseen bounds in the entropic central limit theorem [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. ;
Goetze, Friedrich .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :435-478
[26]   A Berry-Esseen bound of order 1/√n for martingales [J].
Wu, Songqi ;
Ma, Xiaohui ;
Sang, Hailin ;
Fan, Xiequan .
COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) :701-712
[27]   On Esseen type inequalities for combinatorial random sums [J].
Frolov, Andrei N. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) :5932-5940
[28]   A Berry-Esseen Inequality without Higher Order Moments [J].
Wang, Ningning ;
Ahmad, Ibrahim A. .
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02) :180-187
[29]   Berry-Esseen bounds for functionals of independent random variables [J].
Privault, Nicolas ;
Serafin, Grzegorz .
ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
[30]   ON THE ASYMPTOTICALLY EXACT CONSTANTS IN THE BERRY-ESSEEN-KATZ INEQUALITY [J].
Shevtsova, I. G. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (02) :225-252