Characterization of CMO via compactness of the commutators of bilinear fractional integral operators

被引:0
作者
Dinghuai Wang
Jiang Zhou
Zhidong Teng
机构
[1] Nanjing Normal University,School of Mathematical Sciences
[2] Xinjiang University,College of Mathematics and System Sciences
来源
Analysis and Mathematical Physics | 2019年 / 9卷
关键词
Bilinear fractional integral operators; Characterization; Compactness; Iterated commutator; Primary 42B20; Secondary 47B07; 42B35; 47G99;
D O I
暂无
中图分类号
学科分类号
摘要
We give a partial positive answer to the open problem proposed in Wang et al. (Acta Math Sin Ser A 35:1106–1114, 2015), that is, we characterize the BMO space via the boundedness of iterated commutator of bilinear fractional integral operator [Πb→,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\Pi \vec {b},I_{\alpha }]$$\end{document}. Moreover, it is showed that the symbol b belongs to CMO, the closure in BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}$$\end{document} of the space of C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{\infty }$$\end{document} functions with compact support, if and only if the commutator [Πb→,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\Pi \vec {b},I_{\alpha }]$$\end{document} is a compact operator with b→=(b,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}=(b,b)$$\end{document}. On the other hand, Bényi et al. (Math Z 208:569–582, 2015) obtained the separate compactness for commutators of the class Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\alpha }$$\end{document}, when b∈CMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{CMO}$$\end{document}. In this paper, it is proved that b∈CMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{CMO}$$\end{document} is necessary for [b,Bα]i(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,B_{\alpha }]_{i}(i=1,2)$$\end{document} is a compact operator.
引用
收藏
页码:1669 / 1688
页数:19
相关论文
共 49 条
[1]  
Bényi Á(2015)Compactness properties of commutators of bilinear fractional integrals Math. Z. 208 569-582
[2]  
Damián W(2015)Compact bilinear operators: the weighted case Mich. Math. J. 4 39-51
[3]  
Moen K(2013)Compact bilinear operators and commutators Proc. Am. Math. Soc. 141 3609-3621
[4]  
Torres RH(2015)Characterization of compactness of the commutators of bilinear fractional integral operators Potential Anal. 43 481-494
[5]  
Bényi Á(2009)Compactness of commutators of Riesz potential on Morrey spaces Potential Anal. 30 301-313
[6]  
Damián W(2012)Compactness of commutators for singular integrals on Morrey spaces Can. J. Math. 64 257-281
[7]  
Moen K(2013)Weighted estimates for Beltrami equations Ann. Acad. Sci. Fenn. Math. 38 91-113
[8]  
Torres RH(1976)Factorization theorems for Hardy spaces in several variables Ann. Math. 103 611-635
[9]  
Bényi Á(1992)On multilinear fractional integrals Studia Math. 102 49-56
[10]  
Torres RH(2001)Some remarks on multilinear maps and interpolation Math. Ann. 319 151-180