Cluster integrable systems and spin chains

被引:0
|
作者
A. Marshakov
M. Semenyakin
机构
[1] Center for Advanced Studies,
[2] Skoltech,undefined
[3] Faculty of Mathematics,undefined
[4] NRU HSE,undefined
[5] Institute for Theoretical and Experimental Physics,undefined
[6] Theory Department of Lebedev Physics Institute,undefined
关键词
Quantum Groups; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Integrable and superintegrable systems with spin
    Winternitz, Pavel
    Yurdusen, Ismet
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [22] Loschmidt echo of local dynamical processes in integrable and non integrable spin chains
    Sur, Saikat
    Subrahmanyam, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (34)
  • [23] INVARIANT MEASURES FOR INTEGRABLE SPIN CHAINS AND AN INTEGRABLE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Angelopoulos, Yannis
    Killip, Rowan
    Visan, Monica
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 135 - 163
  • [24] Overlaps and fermionic dualities for integrable super spin chains
    Kristjansen, Charlotte
    Muller, Dennis
    Zarembo, Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [25] The magnetocaloric effect in integrable spin-s chains
    Ribeiro, G. A. P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [26] Form factors of integrable Heisenberg (higher) spin chains
    Castro-Alvaredo, O. A.
    Maillet, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7451 - 7471
  • [27] Crosscap States in Integrable Field Theories and Spin Chains
    Caetano, Joao
    Komatsu, Shota
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [28] Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains
    Krajni, Ziga
    Schmidt, Johannes
    Ilievski, Enej
    Prosen, Tomaz
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [29] Subdiffusive hydrodynamics of nearly integrable anisotropic spin chains
    De Nardis, Jacopo
    Gopalakrishnan, Sarang
    Vasseur, Romain
    Ware, Brayden
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (34)
  • [30] Crosscap States in Integrable Field Theories and Spin Chains
    João Caetano
    Shota Komatsu
    Journal of Statistical Physics, 2022, 187