We discuss relation between the cluster integrable systems and spin chains in the context of their correspondence with 5d supersymmetric gauge theories. It is shown that glN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathfrak{gl}}_N $$\end{document} XXZ-type spin chain on M sites is isomorphic to a cluster integrable system with N × M rectangular Newton polygon and N × M fundamental domain of a ‘fence net’ bipartite graph. The Casimir functions of the Poisson bracket, labeled by the zig-zag paths on the graph, correspond to the inhomogeneities, on-site Casimirs and twists of the chain, supplemented by total spin. The symmetricity of cluster formulation implies natural spectral duality, relating glN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathfrak{gl}}_N $$\end{document} -chain on M sites with the glM\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathfrak{gl}}_M $$\end{document} -chain on N sites. For these systems we construct explicitly a subgroup of the cluster mapping class group GQ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document} and show that it acts by permutations of zig-zags and, as a consequence, by permutations of twists and inhomogeneities. Finally, we derive Hirota bilinear equations, describing dynamics of the tau-functions or A-cluster variables under the action of some generators of GQ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathcal{G}}_{\mathcal{Q}} $$\end{document}.
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
Dept Phys, CQP, NYU, 726 Broadway, New York, NY 10003 USAUniv Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
Krajni, Ziga
Schmidt, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Bonacci GmbH, Robert Koch Str 8, D-50937 Cologne, GermanyUniv Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
Schmidt, Johannes
Ilievski, Enej
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
Ilievski, Enej
Prosen, Tomaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
机构:
CY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, FranceCY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
De Nardis, Jacopo
Gopalakrishnan, Sarang
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USACY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
Gopalakrishnan, Sarang
Vasseur, Romain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Phys, Amherst, MA 01003 USACY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
Vasseur, Romain
Ware, Brayden
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USACY Cergy Paris Univ, CNRS UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France