Decay solution for the renewal equation with diffusion

被引:0
作者
Boumediene Abdellaoui
Tarik Mohamed Touaoula
机构
[1] Université Aboubekr Belkaïd,Département de Mathématiques
来源
Nonlinear Differential Equations and Applications NoDEA | 2010年 / 17卷
关键词
35B40; 35F10; 92D25; Cell division equations; Growth processes; General relative entropy; Asymptotic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider age structured equation with diffusion under nonlocal boundary condition and nonnegative initial data. We prove existence, uniqueness and the positivity of the solution to the above problem. Our main result is to get an exponential decay of the solution for large times toward such a study state. To this end we prove a weighted Poincaré–Wirtinger’s type inequality in unbounded domain.
引用
收藏
页码:271 / 288
页数:17
相关论文
共 26 条
  • [1] Basse B.(2003)A mathematical model for analysis of the cell cycle in cell lines derived from human tumors J. Math. Biol. 47 295-312
  • [2] Baguley B.C.(1989)The age-dependent eigenfunctions of certain Kolmogorov equations of engineering, economics, and biology Appl. Math. Model. 13 47-57
  • [3] Marshall E.S.(1983)Extensions of property of solutions of heat equation to linear thermoelasticity and other theories Q. Appl. Math. 40 319-330
  • [4] Joseph W.R.(2004)General entropy equations for structured population models and scattering C. R. Math. Acad. Sci. Paris 338 697-702
  • [5] van Brunt B.(2005)General relative entropy inequality: an illustration on growth models J. Math. Pures. Appl. 84 1235-1260
  • [6] Wake G.(1979)Non-local boundary value problems for parabolic equation Differ. Ukravn. 15 74-78
  • [7] Wall D.J.N.(2006)Bifurcation diagrams of population models with nonlinear diffusion J. Comput. Appl. Math. 194 357-367
  • [8] Brewer J.W.(2002)Stability in a nonlinear population maturation model Math. Model. Methods Appl. Sci. 12 1751-1772
  • [9] Day W.A.(2005)Exponential decay for the fragmentation or cell division equation J. Differ. Equ. 210 155-177
  • [10] Michel P.(1981)Non-local parabolic problems and the inverse heat-conduction problem Differ. Ukravn. 17 1193-1199