A generalization of the 3d distance theorem

被引:0
|
作者
Manish Mishra
Amy Binny Philip
机构
[1] Indian Institute of Science Education and Research Pune,
来源
Archiv der Mathematik | 2020年 / 115卷
关键词
Equidistribution theorem; Steinhaus conjecture; Three gaps problem; 11B05;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a positive rational number. A function f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} has the finite gaps property mod P if the following holds: for any positive irrational α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and positive integer M, when the values of f(mα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(m\alpha )$$\end{document}, 1≤m≤M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le m\le M$$\end{document}, are inserted mod P into the interval [0, P) and arranged in increasing order, the number of distinct gaps between successive terms is bounded by a constant kf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{f}$$\end{document} which depends only on f. In this note, we prove a generalization of the 3d distance theorem of Chung and Graham. As a consequence, we show that a piecewise linear map with rational slopes and having only finitely many non-differentiable points has the finite gaps property mod P. We also show that if f is the distance to the nearest integer function, then it has the finite gaps property mod 1 with kf≤6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_f\le 6$$\end{document}.
引用
收藏
页码:169 / 173
页数:4
相关论文
共 50 条
  • [1] A generalization of the 3d distance theorem
    Mishra, Manish
    Philip, Amy Binny
    ARCHIV DER MATHEMATIK, 2020, 115 (02) : 169 - 173
  • [2] GENERALIZATION OF THE DESARGUES THEOREM FOR SPARSE 3D RECONSTRUCTION
    Fremont, Vincent
    Chellali, Ryad
    Fontaine, Jean-Guy
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2009, 6 (01) : 49 - 69
  • [3] A GENERALIZATION OF THE 3-DISTANCE THEOREM FOR GROUPS
    FRIED, E
    SOS, VT
    ALGEBRA UNIVERSALIS, 1992, 29 (01) : 136 - 149
  • [4] A PROPOSAL FOR GENERALIZATION of 3D MODELS
    Uyar, A.
    Ulugtekin, N. N.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 389 - 392
  • [5] Generalization of 3D linear building groups for 3D city modeling
    Wang, Qing-guo
    Zou, Jingui
    Zhang, Lihua
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION SCIENCE, 2006, 6420
  • [6] SHORT PROOF OF THE 3D-DISTANCE THEOREM
    LIANG, FM
    DISCRETE MATHEMATICS, 1979, 28 (03) : 325 - 326
  • [8] Generalization of 3D Mandelbrot and Julia sets
    Jin Cheng
    Jian-rong Tan
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 134 - 141
  • [9] Generalization of 3D Mandelbrot and Julia sets
    Cheng Jin
    Tan Jian-rong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (01): : 134 - 141
  • [10] Generalization of 3D IFC Building Models
    Geiger, Andreas
    Benner, Joachim
    Haefele, Karl Heinz
    3D GEOINFORMATION SCIENCE, 3D GEOINFO 2014, 2015, : 19 - 35