Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number

被引:34
作者
Chen Y. [1 ]
Ohashi H. [1 ]
Akiyama M. [1 ]
机构
[1] Dept. of Quant. Eng. and Syst. Sci., Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113
关键词
BGK model; Convective heat transfer; Lattice gas; Prandtl number;
D O I
10.1023/A:1025621832215
中图分类号
学科分类号
摘要
In this paper, two time relaxation parameters are introduce to a thermal lattice BGK model to make its Prandtl number controllable. The dependency of the Prandtl number on the two parameters is derived. Numerical measurement of the transport coefficients is used to demonstrate the validity of the method. Furthermore, two examples of convective heat transfer are calculated, with one to show the effectiveness, and the other to show the breakdown of the two-parameter formulation under different conditions.
引用
收藏
页码:169 / 185
页数:16
相关论文
共 17 条
[1]  
Alexander F., Chen S., Sterling J., Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, (1993)
[2]  
Behrend O., Harris R., Warren P., Hydrodynamic behavior of lattice Boltzmann and lattice Bhatnagar-Gross-Krook models, Phys. Rev. E, 50, 6, pp. 4586-4595, (1994)
[3]  
Berman N., Santos V., Laminar velocity profiles in developing flows using a laser Doppler technique, AIChE J., 15, pp. 323-327, (1969)
[4]  
Chen H., Chen S., Matthaeus W., Recovery of Navier-stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 45, (1992)
[5]  
Chen H., Chen S., Martinez D., Matthaeus W., Lattice Boltzmann model for simulation of magnetohydrodynamic phenomena, Phys. Rev. Lett., 67, (1991)
[6]  
Chen Y., Ohashi H., Akiyama M., Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations, Phys. Rev. E, 50, 4, pp. 2776-2783, (1994)
[7]  
Chen Y., Ohashi H., Akiyama M., Heat transfer in lattice BGK modeled fluid, J. Stat. Phys., 81, 1-2, (1995)
[8]  
Chen Y., Ohashi H., Akiyama M., Prandtl number of the lattice Bhatnagar-Gross-Krook fluid, Phys. Fluid A, 7, 9, pp. 2280-2284, (1995)
[9]  
Hwang C., Fan L., Finite difference analysis of forced-convection heat transfer in entrance of a flat rectangular duct, Appl. Sci. Res. Sect A, 13, pp. 401-422, (1964)
[10]  
Kadanoff L., McNamara G., Zanetti G., From automata to fluid flow: Comparisons of simulation and theory, Phys. Rev. E, 40, 8, pp. 4527-4541, (1989)