Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on m-dimensional compact intervals

被引:0
作者
Sokol B. Kaliaj
Agron D. Tato
Fatmir D. Gumeni
机构
[1] University of Elbasan,
[2] Planetar University of Tirana,undefined
来源
Czechoslovak Mathematical Journal | 2012年 / 62卷
关键词
Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; -dimensional compact interval; 28B05; 46G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on m-dimensional compact intervals of ℝm and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
引用
收藏
页码:243 / 255
页数:12
相关论文
共 13 条
  • [1] Cichoń M.(2001)Convergence theorems for the Henstock-Kurzweil-Pettis integral ActaMath. Hung. 92 75-82
  • [2] Di Piazza L.(2006)Characterizations of Kurzweil-Henstock-Pettis integrable functions Stud. Math. 176 159-176
  • [3] Musiał K.(2003)Kurzweil-Henstock type integration on Banach spaces Real Anal. Exch 29 543-556
  • [4] Di Piazza L.(1975)Pointwise compact sets of measurable functions Manuscr. Math. 15 219-242
  • [5] Fremlin D. H.(2001)On Henstock-Dunford and Henstock-Pettis integrals Int. J. Math. Sci. 25 467-478
  • [6] Guoju Y.(2009)On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals Rocky Mt. J. Math. 39 1233-1244
  • [7] Tianqing A.(1964)Weak compactness and reflexivity Isr. J. Math. 2 101-119
  • [8] Guoju Y.(1992)Equiintegrability and controlled convergence of Perron-type integrable functions Real Anal. Exch. 17 110-139
  • [9] James R.(1987)Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces Atti Semin. Mat. Fis. Univ. Modena 35 159-165
  • [10] Kurzweil J.(1991)Topics in the theory of Pettis integration Rend. Ist. Math. Univ. Trieste 23 177-262