On time computability of functions in one-way cellular automata
被引:0
作者:
Thomas Buchholz
论文数: 0引用数: 0
h-index: 0
机构: Institute of Informatics,
Thomas Buchholz
Martin Kutrib
论文数: 0引用数: 0
h-index: 0
机构: Institute of Informatics,
Martin Kutrib
机构:
[1] Institute of Informatics,
[2] University of Giessen,undefined
[3] Arndtstrasse 2,undefined
[4] D-35392 Giessen,undefined
[5] Germany (e-mail: {buchholz,undefined
[6] kutrib}@informatik.uni-giessen.de)
,undefined
来源:
Acta Informatica
|
1998年
/
35卷
关键词:
Time Computability;
Cellular Automaton;
Formal Language;
Distinguished Cell;
Distinguished State;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The capability of one-way (space-bounded) cellular automata (OCA) to time-compute functions is investigated. That means given a constant input of length \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$n$\end{document} a distinguished cell has to enter a distinguished state exactly after \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$f(n)$\end{document} time steps. The family of such functions (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal C}$\end{document}(OCA)) is characterized in terms of formal language recognition. Several functions are proved to be time-computable and properties of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal C}$\end{document}(OCA) are given. The time-computation at some points is concerned with the concept of signals and their realization which is quite formally defined for the first time.