On time computability of functions in one-way cellular automata

被引:0
作者
Thomas Buchholz
Martin Kutrib
机构
[1] Institute of Informatics,
[2] University of Giessen,undefined
[3] Arndtstrasse 2,undefined
[4] D-35392 Giessen,undefined
[5] Germany (e-mail: {buchholz,undefined
[6] kutrib}@informatik.uni-giessen.de) ,undefined
来源
Acta Informatica | 1998年 / 35卷
关键词
Time Computability; Cellular Automaton; Formal Language; Distinguished Cell; Distinguished State;
D O I
暂无
中图分类号
学科分类号
摘要
The capability of one-way (space-bounded) cellular automata (OCA) to time-compute functions is investigated. That means given a constant input of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n$\end{document} a distinguished cell has to enter a distinguished state exactly after \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f(n)$\end{document} time steps. The family of such functions (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal C}$\end{document}(OCA)) is characterized in terms of formal language recognition. Several functions are proved to be time-computable and properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal C}$\end{document}(OCA) are given. The time-computation at some points is concerned with the concept of signals and their realization which is quite formally defined for the first time.
引用
收藏
页码:329 / 252
页数:-77
相关论文
empty
未找到相关数据