Transient oscillations induced by delayed growth response in the chemostat

被引:0
作者
Huaxing Xia
Gail S.K. Wolkowicz
Lin Wang
机构
[1] McMaster University,Department of Mathematics and Statistics
来源
Journal of Mathematical Biology | 2005年 / 50卷
关键词
Chemostat; Delayed nonmonotone growth; Hopf bifurcation; Transient oscillations; Unstable periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.
引用
收藏
页码:489 / 530
页数:41
相关论文
共 39 条
[31]  
Tang undefined(1992)undefined J. Math. Biol. 31 1-undefined
[32]  
Thingstad undefined(1974)undefined J. Theor. Biol. 48 149-undefined
[33]  
Wang undefined(1999)undefined System Sci. Math. Sci. 12 23-undefined
[34]  
Wolkowicz undefined(1992)undefined SIAM J. Appl. Math. 52 222-undefined
[35]  
Wolkowicz undefined(1997)undefined SIAM J. Appl. Math. 57 1019-undefined
[36]  
Wolkowicz undefined(1997)undefined SIAM J. Appl. Math. 57 1281-undefined
[37]  
Wolkowicz undefined(1999)undefined J. Math. Biol. 38 285-undefined
[38]  
Yang undefined(1975)undefined Biotechnol. Bioeng. 17 1211-undefined
[39]  
Zhao undefined(1995)undefined J. Math. Anal. Appl. 193 329-undefined