Iterated extensions and relative Lubin-Tate groups

被引:5
作者
Berger L. [1 ]
机构
[1] UMPA de l’ENS de Lyon, UMR 5669 du CNRS, IUF, Lyon
基金
美国国家科学基金会;
关键词
Chebyshev polynomial; Coleman power series; Field of norms; Iterated extension; Local class field theory; Lubin-Tate group; p-adic dynamical system; p-adic Hodge theory;
D O I
10.1007/s40316-015-0052-4
中图分类号
学科分类号
摘要
Let K be a finite extension of Qp with residue field Fq and let P(T) = Td+ ad-1Td-1+ ⋯ + a1T where d is a power of q and ai∈ mK for all i. Let u0 be a uniformizer of OK and let {un}n⩾0 be a sequence of elements of Q¯ p such that P(un+1) = un for all n⩾ 0. Let K∞ be the field generated over K by all the un. If K∞/ K is a Galois extension, then it is abelian, and our main result is that it is generated by the torsion points of a relative Lubin-Tate group (a generalization of the usual Lubin-Tate groups). The proof of this involves generalizing the construction of Coleman power series, constructing some p-adic periods in Fontaine’s rings, and using local class field theory. © 2016, Fondation Carl-Herz and Springer International Publishing Switzerland.
引用
收藏
页码:17 / 28
页数:11
相关论文
共 24 条
[1]  
Aitken W., Hajir F., Maire C., Finitely ramified iterated extensions, Int. Math. Res. Not., 14, pp. 855-880, (2005)
[2]  
Berger L., Représentations p -adiques et équations différentielles, Invent. Math., 148, 2, pp. 219-284, (2002)
[3]  
Berger L., Lifting the field of norms, J. École Polytechn. Math., 1, pp. 29-38, (2014)
[4]  
Boston N., Jones R., Arboreal Galois representations, Geom. Dedic., 124, pp. 27-35, (2007)
[5]  
Canonical Cohen rings for norm fields. Int. Math. Res. Not. IMRN, (2014)
[6]  
Cais B., Davis C., Lubin, J., (2014)
[7]  
Coleman R., Division values in local fields, Invent. Math., 53, 2, pp. 91-116, (1979)
[8]  
Colmez P., Espaces de Banach de dimension finie, J. Inst. Math. Jussieu, 1, 3, pp. 331-439, (2002)
[9]  
The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87, pp. 249–309. Birkhäuser Boston, Boston, MA, (1990)
[10]  
Fontaine J.M., Le corps des périodes p -adiques, Astérisque, 223, pp. 59-111, (1994)