Blow-up time estimates in porous medium equations with nonlinear boundary conditions

被引:0
作者
Juntang Ding
Xuhui Shen
机构
[1] Shanxi University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Blowup; Porous medium equation; Lower bound; 35B44; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the blow-up problem of the following porous medium equations with nonlinear boundary conditions ut=Δum+k(t)f(u)inΩ×(0,t∗),∂u∂ν=g(u)on∂Ω×(0,t∗),u(x,0)=u0(x)inΩ¯,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{t} =\Delta u^{m}+k(t)f(u) &{}\hbox { in } \Omega \times (0,t^{*}), \\ {}\displaystyle \frac{\partial u}{\partial \nu }=g(u) &{}\hbox { on } \partial \Omega \times (0,t^{*}), \\ {}\displaystyle u(x,0)=u_{0}(x) &{} \hbox { in } \overline{\Omega }, \end{array} \right. \end{aligned}$$\end{document}where m>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>1$$\end{document}, Ω⊂Rn(n≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{n} \ (n\ge 2)$$\end{document} is a bounded convex domain with smooth boundary. Under appropriate assumptions on the data, a criterion is given to guarantee that solution u blows up at finite time, and an upper bound for blow-up time is derived. Moreover, a lower bound for blow-up time is also obtained.
引用
收藏
相关论文
共 49 条
[1]  
Brezis H(1998)Some simple nonlinear PDE’s without solutions Boll. Un. Mat. Ital. 1 233-262
[2]  
Cabré X(1991)On a singular nonlinear Dirichlet problem- Boll. Un. Mat. Ital. 5 955-975
[3]  
Coclite MM(2017)On a model for the evolution of morphogens in a growing tissue II: Z. Angew. Math. Phys. 68 92-112
[4]  
Coclite GM(2017) case J. Differ. Equ. 263 1079-1124
[5]  
Coclite MM(2016)On a model for the evolution of morphogens in a growing tissue III: SIAM J. Math. Anal. 48 1575-1615
[6]  
Coclite GM(2016)On a model for the evolution of morphogens in a growing tissue J. Math. Anal. Appl. 433 1718-1735
[7]  
Coclite MM(2016)Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions Z. Angew. Math. Phys. 67 1-18
[8]  
Coclite GM(2018)Blow-up in Math. Methods Appl. Sci. 41 1683-1696
[9]  
Coclite MM(2018)-Laplacian heat equations with nonlinear boundary conditions Comput. Math. Appl. 75 1288-1301
[10]  
Mishra S(2017)Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions Electron. J. Qual. Theory Differ. Equ. 99 1-15