Dirac magnetic monopole production from photon fusion in proton collisions

被引:0
|
作者
T. Dougall
S. D. Wick
机构
[1] Southern Methodist University,Department of Physics
[2] Lake Forest College,Department of Physics
来源
关键词
14.80.Hv Magnetic monopoles;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the lowest-order cross-section for Dirac magnetic monopole production from photon fusion ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}in p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \bar{{p}}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sqrt{{s}}$\end{document} = 1.96 TeV, pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sqrt{{s}}$\end{document} = 14 TeV, and we compare \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} with Drell-Yan (DY) production. We find the total \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} cross-section is comparable with DY at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sqrt{{s}}$\end{document} = 1.96 TeV and dominates DY by a factor > 50 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sqrt{{s}}$\end{document} = 14 TeV. We conclude that both the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} and DY processes allow for a monopole mass limit m > 370 GeV based upon the null results of the recent monopole search at the Collider Detector at Fermilab (CDF). We also conclude that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} production is the leading mechanism to be considered for direct monopole searches at the Large Hadron Collider (LHC).
引用
收藏
页码:213 / 217
页数:4
相关论文
共 50 条
  • [31] Charm production from proton-proton collisions
    Liu, W
    Ko, CM
    Lee, SH
    NUCLEAR PHYSICS A, 2003, 728 (3-4) : 457 - 470
  • [32] Study of two photon production process in proton-proton collisions at 216 MeV
    Khrykin, AS
    HADRON SPECTROSCOPY, 2002, 619 : 761 - 764
  • [33] MONTE-CARLO STUDIES OF PHOTON PRODUCTION IN POLARIZED PROTON-PROTON COLLISIONS
    GULLENSTERN, S
    GORNICKI, P
    MANKIEWICZ, L
    SCHAFER, A
    NUCLEAR PHYSICS A, 1993, 560 (01) : 494 - 500
  • [34] W Boson Pair Production in Association with the Photon in Proton - Proton Collisions at LHC Energies
    A. I. Ahmadov
    International Journal of Theoretical Physics, 2019, 58 : 2770 - 2794
  • [35] Measurement of the proton-antiproton pair production from two-photon collisions at TRISTAN
    Hamasaki, H
    Abe, K
    Amako, K
    Arai, Y
    Asano, Y
    Chiba, M
    Chiba, Y
    Daigo, M
    Fukawa, M
    Fukushima, Y
    Haba, J
    Hanai, H
    Hemmi, Y
    Higuchi, M
    Hirose, T
    Homma, Y
    Ishihara, N
    Iwata, Y
    Kanzaki, J
    Kikuchi, R
    Kondo, T
    Korhonen, TT
    Kurashige, H
    Matsuda, EK
    Matsui, T
    Miyake, K
    Nagashima, Y
    Nakagawa, Y
    Nakamura, T
    Nakano, I
    Odaka, S
    Ogawa, K
    Ohama, T
    Ohsugi, T
    Ohyama, H
    Okabe, K
    Okamoto, A
    Ono, A
    Pennanen, J
    Sakamoto, H
    Sakuda, M
    Sato, M
    Sato, N
    Shioden, M
    Shirai, J
    Sumiyoshi, T
    Takada, Y
    Takasaki, F
    Takita, M
    Tamura, N
    PHYSICS LETTERS B, 1997, 407 (02) : 185 - 192
  • [36] Minimal NCSM Direct Photon Production in Proton-antiproton Collisions
    I. Chadou
    N. Mebarki
    M. R. Bekli
    International Journal of Theoretical Physics, 2017, 56 : 3271 - 3284
  • [37] MICROSCOPIC THEORY OF PHOTON PRODUCTION IN PROTON NUCLEUS AND NUCLEUS NUCLEUS COLLISIONS
    BIRO, TS
    NIITA, K
    DEPAOLI, AL
    BAUER, W
    CASSING, W
    MOSEL, U
    NUCLEAR PHYSICS A, 1987, 475 (03) : 579 - 597
  • [38] Forward rapidity isolated photon production in proton-nucleus collisions
    Ducloue, B.
    Lappi, T.
    Mantysaari, H.
    NUCLEAR PHYSICS A, 2019, 982 : 267 - 270
  • [39] Isolated photon production in proton-nucleus collisions at forward rapidity
    Ducloue, B.
    Lappi, T.
    Mantysaari, H.
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [40] Minimal NCSM Direct Photon Production in Proton-antiproton Collisions
    Chadou, I.
    Mebarki, N.
    Bekli, M. R.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (10) : 3271 - 3284