Calderón-Zygmund-Type Operators on Weighted Weak Hardy Spaces over ℝn

被引:0
作者
Quek T. [1 ]
Yang D. [2 ]
机构
[1] Department of Mathematics, National University of Singapore
[2] Department of Mathematics, Beijing Normal University
关键词
Atom; Calderón-Zygmund operator; Hardy space; Lebesgue space; Weak Hardy space; Weak Lebesgue space; Weight;
D O I
10.1007/s101149900022
中图分类号
学科分类号
摘要
We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces, weighted weak Lebesgue spaces, weighted Hardy spaces and weighted weak Hardy spaces. The sharpness of some results is also investigated.
引用
收藏
页码:141 / 160
页数:19
相关论文
共 15 条
  • [1] Coifman R.R., Meyer Y., Au-delà des Opérateurs Pseudo-différentiels, (1978)
  • [2] Garcia-Cuerva J., Kazarian K.S., Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces, Studia Math, 109, 3, pp. 255-276, (1994)
  • [3] Garcia-Cuerva J., Francia R.D.J.L., Weighted Norm Inequalities and Related Topics, (1985)
  • [4] Journe J.-L., Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math, 994, (1983)
  • [5] Stein E.M., Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, (1993)
  • [6] Yabuta K., Generalizations of Calderón-Zygmund operators, Studia Math, 82, pp. 17-31, (1985)
  • [7] Fefferman R., Soria F., The space weak H<sup>1</sup>, Studia Math, 85, pp. 1-16, (1987)
  • [8] Liu H., The weak H<sup>p</sup> spaces on homogeneous groups, Lecture Notes in Math, 1494, pp. 113-118, (1991)
  • [9] Zhang Y., On Oscillatory Integral Operators (in Chinese), (1990)
  • [10] Alvarez J., Continuity of Calderón-Zygmund Type Operators, pp. 17-34, (1994)