An index theorem for gauge-invariant families: The case of solvable groups

被引:0
|
作者
V. Nistor
机构
[1] Pennsylvania State University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2003年 / 99卷
关键词
group action; non-commutative geometry; elliptic operator; gauge group; index formula; K-theory; family index;
D O I
暂无
中图分类号
学科分类号
摘要
We define the gauge-equivariant index of a family of elliptic operators invariant with respect to the free action of a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G} \to B$$ \end{document} of Lie groups (these families are called ``gauge-invariant families'' in what follows). If the fibers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G} \to B$$ \end{document} are simply-connected and solvable, we compute the Chern character of the gauge-equivariant index, the result being given by an Atiyah–Singer type formula that incorporates also topological information on the bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{G} \to B$$ \end{document}. The algebras of invariant pseudodifferential operators that we study, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\psi _{{\text{inv}}}^\infty (Y)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\psi }_{{inv}}^\infty (Y)$$ \end{document}, are generalizations of ``parameter dependent'' algebras of pseudodifferential operators (with parameter in Rq), so our results provide also an index theorem for elliptic, parameter dependent pseudodifferential operators. We apply these results to study Fredholm boundary conditions on a simplex.
引用
收藏
页码:155 / 183
页数:28
相关论文
共 8 条
  • [1] An index theorem for gauge-invariant families: The case of solvable groups
    Nistor, V
    ACTA MATHEMATICA HUNGARICA, 2003, 99 (1-2) : 155 - 183
  • [2] Analysis of gauge-equivariant complexes and a topological index theorem for gauge-invariant families
    Nistor, V.
    Troitsky, E.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) : 74 - 97
  • [3] Gauge-Invariant Characterization of Yang–Mills–Higgs Equations
    Marco Castrillón López
    Jaime Muñoz Masqué
    Annales Henri Poincaré, 2007, 8 : 203 - 217
  • [4] Gauge-invariant characterization of Yang-Mills-Higgs equations
    Lopez, Marco Castrillon
    Masque, Jaime Munoz
    ANNALES HENRI POINCARE, 2007, 8 (01): : 203 - 217
  • [5] Gauge-invariant resummation formalism and unitarity in non-commutative QED
    Caporaso, N
    Pasquetti, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (04):
  • [6] Local Index Theorem for Projective Families
    Benameur, Moulay-Tahar
    Gorokhovsky, Alexander
    PERSPECTIVES ON NONCOMMUTATIVE GEOMETRY, 2011, 61 : 1 - +
  • [7] On the relationship of gerbes to the odd families index theorem
    Carey, Alan L.
    Wang, Bai-Ling
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 57 (01) : 23 - 38
  • [8] GAUGE-INVARIANT TENSORS OF 4-MANIFOLD WITH CONFORMAL TORSION-FREE CONNECTION AND THEIR APPLICATIONS FOR MODELING OF SPACE-TIME
    Krivonosov, L. N.
    Luk'yanov, V. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (02): : 180 - 198