A Complexity Trichotomy for k-Regular Asymmetric Spin Systems Using Number Theory

被引:0
作者
Jin-Yi Cai
Zhiguo Fu
Kurt Girstmair
Michael Kowalczyk
机构
[1] Computer Sciences Department,
[2] School of Information Science and Technology & KLAS,undefined
[3] Institute für Mathematik,undefined
[4] Math & CS Department,undefined
来源
computational complexity | 2023年 / 32卷
关键词
Spin systems; Holant problems; Number Theory; Characters; Cyclotomic fields; 68Q17; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document} are two angles satisfying tan(φ)=2tan(ψ)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan(\varphi) = 2 \tan(\psi) > 0$$\end{document}. We prove that under this condition φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}cannot be both rational multiples of π. We use this number theoretic result to prove a classification of the computational complexity of spin systems on k-regular graphs with general (not necessarily symmetric) real valued edge weights. We establish explicit criteria, according to which the partition functions of all such systems are classified into three classes: (1) Polynomial time computable, (2) #P-hard in general but polynomial time computable on planar graphs, and (3) #P-hard on planar graphs. In particular, problems in (2) are precisely those that can be transformed by a holographic reduction to a form solvable by the Fisher-Kasteleyn-Temperley algorithm for counting perfect matchings in a planar graph.
引用
收藏
相关论文
empty
未找到相关数据