Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion

被引:0
作者
Chongfeng Duan
Fang Liu
Song Gao
Jiping Zhao
Lei Niu
Nan Li
Song Liu
Gang Wang
Xiaoming Zhou
Yande Ren
Wenjian Xu
Xuejun Liu
机构
[1] The Affiliated Hospital of Qingdao University,Department of Radiology
[2] The Affiliated Hospital of Qingdao University,Department of Information Management
来源
Clinical Neuroradiology | 2022年 / 32卷
关键词
Artificial intelligence; Computed tomography; Hematoma; Algorithms; Decision curve analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:215 / 223
页数:8
相关论文
共 250 条
  • [11] Viswanathan A(2017)Computed tomographic blend sign is associated with computed tomographic angiography spot sign and predicts secondary neurological deterioration after intracerebral hemorrhage Stroke 48 131-135
  • [12] Greenberg SM(2016)Black hole sign: Novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage Stroke 47 1777-1781
  • [13] Rosand J(2018)The CT swirl sign is associated with hematoma expansion in intracerebral hemorrhage AJNR Am J Neuroradiol 39 232-237
  • [14] Qureshi AI(2012)Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11 Erratum in: Lancet Neurol. 11 307-314
  • [15] Tuhrim S(2016)Leakage sign for primary intracerebral hemorrhage: A novel predictor of hematoma growth Stroke 47 958-963
  • [16] Broderick JP(2017)Predictive value of CTA spot sign on hematoma expansion in intracerebral hemorrhage patients Biomed Res Int 2017 4137210-1125
  • [17] Batjer HH(2017)Noncontrast computed tomography markers of intracerebral hemorrhage expansion Stroke 48 1120-577
  • [18] Hondo H(2016)Radiomics: Images are more than pictures, they are data Radiology 278 563-1248
  • [19] Hanley DF(2012)Radiomics: the process and the challenges Magn Reson Imaging 30 1234-446
  • [20] van Asch CJ(2012)Radiomics: extracting more information from medical images using advanced feature analysis Eur J Cancer 48 441-4396