Semi-quantum Secure Direct Communication Scheme Based on Bell States

被引:0
作者
Chen Xie
Lvzhou Li
Haozhen Situ
Jianhao He
机构
[1] Sun Yat-Sen University,Institute of Computer Science Theory, School of Data and Computer Science
[2] South China Agricultural University,College of Mathematics and Informatics
来源
International Journal of Theoretical Physics | 2018年 / 57卷
关键词
Semi-quantum; Direct secure communication; Bell states;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the idea of semi-quantumness has been often used in designing quantum cryptographic schemes, which allows some of the participants of a quantum cryptographic scheme to remain classical. One of the reasons why this idea is popular is that it allows a quantum information processing task to be accomplished by using quantum resources as few as possible. In this paper, we extend the idea to quantum secure direct communication(QSDC) by proposing a semi-quantum secure direct communication scheme. In the scheme, the message sender, Alice, encodes each bit into a Bell state |φ+〉=12(|00〉+|11〉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\varphi ^{+}\rangle =\frac {1}{\sqrt 2}(|00\rangle +|11\rangle )$\end{document} or |Ψ+〉=12(|01〉+|10〉)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|{\Psi }^{+}\rangle =\frac {1}{\sqrt 2}(|01\rangle +|10\rangle )$\end{document}, and the message receiver, Bob, who is classical in the sense that he can either let the qubit he received reflect undisturbed, or measure the qubit in the computational basis |0〉, |1〉 and then resend it in the state he found. Moreover, the security analysis of our scheme is also given.
引用
收藏
页码:1881 / 1887
页数:6
相关论文
共 63 条
  • [1] Hillery M(1999)Quantum secret sharing Phys. Rev. A 59 1829-365
  • [2] Buoek V(2002)Deterministic secure direct communication using entanglement Phys. Rev. Lett. 89 187902-258
  • [3] Berthiaume A(2003)The Ping-Pong protocol can be attacked without eavesdropping Phys. Rev. Lett. 91 109801-958
  • [4] Bostrom K(2003)Eavesdropping on the ping-pong quantum communication protocol Phys. Rev. Lett. 90 157901-162
  • [5] Felbinger T(2003)Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block Phys. Rev. A 68 042317-3824
  • [6] Cai Q(2005)Quantum secure direct communication with high-dimension quantum superdense coding Phys. Rev. A 71 044305-undefined
  • [7] Wojcik A(2006)Quantum direct communication with authentication Phys. Rev. A 73 042305-undefined
  • [8] Deng FG(2007)Comment on Quantum direct communication with authentication Phys. Rev. A 75 026301-undefined
  • [9] Long GL(2006)Quantum secure direct communication network with einstein-CPodolsky-CRosen pairs Phys. Lett. A 359 359-undefined
  • [10] Liu XS(2006)Secure direct communication based on secret transmitting order of particles Phys. Rev. A 73 022338-undefined